期刊文献+

模具结构对模压变形超细晶5052铝合金拉伸性能的影响 被引量:3

Influence of die construction on tensile properties of ultrafine grain 5052 aluminum alloy processed by repetitive groove pressing
下载PDF
导出
摘要 在自制的新型组合式模具上进行两种不同结构模具下的反复模压变形制备超细晶5052铝合金板材,并研究了模具结构对其拉伸性能的影响。结果表明:限制模压(Constrained Groove Pressing,CGP)变形和非限制模压(Unconstrained Groove Pressing,UGP)变形均能够显著强化5052铝合金,抗拉强度随变形道次的增加而单调递增。5052铝合金经CGP和UGP变形后均呈现韧性断裂特征,CGP变形试样的伸长率随变形道次的增加基本保持不变,且在变形3道次后略有提高;UGP变形试样的伸长率随变形道次的增加不断减小,且显著低于CGP变形试样。CGP与UGP变形试样拉伸性能上的差异是由其晶粒细化能力上的本质差异决定的,CGP变形试样具有更为优异的综合力学性能。 Tensile properties of ultrafine grain 5052 aluminum alloy processed by repetitive groove pressing, using a novel self-designed groove pressing die, were investigated. The results show that both constrained groove pressing (CGP) and unconstrained groove pressing (UGP) are both good for strengthening the 5052 aluminum alloy, and the ultimate tensile strength increases with the increasing of pass number. Fracture surface morphology demonstrates that the fracture mode is ductile. The elongation of the sample processed by CGP keeps constant approximately, and increases slightly after the third pass. But the elongation of the UGP processed sheets decreases continually with the increasing of pass number, and much lower than that of the CGP. The differences in tensile properties of the CGP and UGP processed uhrafine grain 5052 aluminum alloy are essentially attributed to the difference in grain refinement by CGP and UGP. Compared with UGP, CGP processed sheets exhibit better comprehensive mechanical properties.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2013年第4期36-40,共5页 Transactions of Materials and Heat Treatment
基金 福建省教育厅A类项目资助(JA11301) 福建省高校杰出青年科研人才培育计划(JA12393) 福建船政交通职业学院人才引进项目及科技发展专项基金(KY1104)
关键词 模压变形 模具结构 5052铝合金 超细晶 拉伸性能 groove pressing die construction 5052 aluminum alloy ultrafine grain tensile property
  • 相关文献

参考文献20

  • 1杨开怀,彭开萍,陈文哲.限制模压变形1060纯铝的组织演化与晶粒细化[J].中国有色金属学报,2011,21(12):3026-3032. 被引量:9
  • 2杨开怀,陈文哲.大体积超细晶金属材料的剧烈塑性变形法制备技术[J].塑性工程学报,2010,17(2):123-129. 被引量:17
  • 3Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum [ J ]. Materials Science & Engineering A ,2002,328( 1 ) :98 - 103.
  • 4Krishnaiah A, Chakkingal U, Venugopal P. Applicability of the groove pressing technique for grain refinement in commercial purity copper [ J ]. Materials Science & Engineering A ,2005,410 - 411 ( 11 ) :337 - 340.
  • 5Krishnaiah A, Chakkingal U,Venugopal P. Production of uhrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing [ J]. Scripta Materialia,2005 ,52(12) :1229 - 1233.
  • 6Zrnik J,Kovarik T, Novy Z, et al. Ultrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing [ J ]. Materials Science & Engineering A,2009,503 ( 1 - 2 ) : 126 - 129.
  • 7Zrnik J,Kovarik T,Cieslar M. Microstructure and properties of aluminium processed by constrained groove pressing [ J]. Materials Science Forum, 2008,584 - 586 ( 1 ) :535 - 540.
  • 8PENG Kai-ping,MOU Xue-ping,ZENG Jia-wei, et al. Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing [ J ]. Computational Materials Science ,2011,50 ( 4 ) : 1526 - 1532.
  • 9PENG Kai-ping,ZHANG Ying,Shaw L L,et al. Microstructure dependence of a Cu-38Zn alloy on processing condition of constrained groove pressing [ J ]. Acta Materialia,2009,57 (18) :5543 - 5553.
  • 10杨开怀,彭开萍,陈文哲.模具结构对反复模压变形5052铝合金显微组织的影响[J].材料热处理学报,2011,32(6):103-108. 被引量:11

二级参考文献96

  • 1张新明,邓运来,刘瑛,唐建国,周卓平.不同温度轧制多晶铝的微观组织与晶界分布[J].金属学报,2005,41(9):947-952. 被引量:9
  • 2张忠明,徐春杰,田景来,王锦程,郭学锋.ECAP挤压L2纯铝的微观组织演化规律[J].西安理工大学学报,2005,21(3):227-231. 被引量:12
  • 3R Z Valiev, R K Islamgaliev, I V Alexandrov. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000. 45: 103- 189.
  • 4H Gleiter. Nanocrystalline materials [J]. Progress in Materials Science, 1989,33: 223-315.
  • 5Y T Zhu, T C Lowe, T G Langdon Performance and applications of nanostructured materials produced by severe plastic deformation[J]. Scripta Materialia, 2004. 51:825-830.
  • 6Y T Zhu, T G LangdorL The Fundamentals of Nanostructured Materials Processed by Severe Plastic Deformation[J]. JOM, 2004. 56 : 58-63.
  • 7J R Weertman. Hall-Petch strengthening in nanocrystalline metals[J]. Material Science & Engineering A, 1993. 166: 161-167.
  • 8U Erb, A M El-Sherik, G Palumbo, et al. Synthesis, structure and properties of electroplated nanocrystalline materials[J]. Nanostructured Materials, 1993. (2) : 383- 390.
  • 9C C Koch, Y S Cho. Nanocrystals by high energy ball milling[J]. Nanostructured Materials, 1992. ( 1 ):207- 212.
  • 10Z Horita,T Fujinami, T G Langdon. The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties[J]. Materials Science & Engineering A, 2001. 318: 34-41.

共引文献38

同被引文献31

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部