期刊文献+

阻尼波动方程在模空间上的一些估计 被引量:1

Estimates of damped wave equations on modulation spaces
原文传递
导出
摘要 本文研究分数次阻尼波动方程解在模空间上的估计及相应的时空估计,作为应用,我们将得到小初值条件下一类Cauchy问题的全局解. We obtain some space-time estimates for the fundamental solution u(t, x) to the damped fractional wave equation. Our space frame is the modulation space. As an application, we obtain the global solution to the nonlinear Cauchy problem, with small initial data.
出处 《中国科学:数学》 CSCD 北大核心 2013年第4期355-364,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10931001 10871173 11026104和11201103)资助项目
关键词 阻尼波动方程 模空间 全局解 damped wave equation modulation space global solution
  • 相关文献

参考文献1

二级参考文献15

  • 1Benyi A, GrSchenig K, Okoudjou K A, et al. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246:366-384.
  • 2Calderdn A P, Torchinsky A. Parabolic functions associated with a distribution, II. Adv Math, 1977, 24:101-171.
  • 3Chen J, Fan D, Sun L. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discret Contin Dyn Syst, 2012, 32:467-485.
  • 4Feichtinger H G. Modulation spaces on locally compact abelian groups. In: Krishna M, Radha R, Thangavelu S, eds. Technical Report, University of Vienna, 1983, Wavelets and Their Applications, 99-140. New Delhi: Allied Publishers, 2003.
  • 5Feichtinger H G. Modulation spaces: looking back and ahead. Sampl Theory Signal Image Process, 2006, 5:109-140.
  • 6GrSchening K. Foundations of Time-Frequency Analysis. Boston: BirkhEuser, 2001.
  • 7Kobayashi M. Modulation spaces Mp,q for 0 < p, q < oo. Funct Spaces Appl, 2006, 4:329-341.
  • 8Kobayachi M. Dual of modulation spaces. Funct Spaces Appl, 2007, 5:1-8.
  • 9Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo, 1981, 28:267-315.
  • 10Miyachi A, Nicola F, Riveti S, et al. Estimates for unimodular Fourier multipliers on modulation spaces. Proc Amer Math Soc, 2009, 137:3869-3883.

共引文献3

同被引文献10

  • 1Andrews G,Ball J M.Asymptotic behavior and changes in phase in one-dimensional nonlinear viscoealsticity[J].J.Differential Equation,1982(44):336-341.
  • 2Kawashima S,Shibata Y.Global existence and exponential stability of small solutions to nonlinear viscoelasticity[J].Comm.Math.Phys,1992(148):189-208.
  • 3Clements J.Existence theorems for a quasilinear evolution[J].SIAM J.Math,1974(26):745-752.
  • 4Yang zhijian.Global attrator for the Kirchhoff type equation with a strong dissipation[J].Differential Equations,2010,249(2):3258-3278.
  • 5Yang Zhijian,Chen guowang.Global existence of solutions for quasi-linear wave equations with viscous damping[J].Math.Anal.Appl,2003(285):604-628.
  • 6Chen guowang,Yue hongyun,Wang shubin.The initial boundary value problem ror quasi-linear wave equation with viscous damping[J].Math.Anal.Appl,2007(331):823-839.
  • 7李敏,林国广.带黏性项的强阻尼波动方程解的指数衰减性[J].中国科技信息,2011(10):47-49. 被引量:1
  • 8李玉环,刘盈盈,穆春来.动态边界条件下一类强阻尼波动方程解的爆破[J].西南大学学报(自然科学版),2011,33(7):10-15. 被引量:3
  • 9刘天花.3维chemotaxis-fluid方程弱解的整体存在性[J].四川理工学院学报(自然科学版),2012,25(5):97-100. 被引量:1
  • 10张媛媛,王宏伟,宋志华.具强阻尼项波动方程整体解的存在性[J].吉林师范大学学报(自然科学版),2013,34(3):25-27. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部