摘要
本文研究了n维微分几何中Riemann张量指标表达式的标准型完全分类问题,通过引入指标结构图的概念,证明了规范类型单项式都是标准型,并且构成次数不大于5的Sakai类型单项式的正交基底,由此得到Sakai类型单项式的标准型完全分类,这是次数大于3时标准型完全分类问题的第一个结果.同时给出了相应标准化算法,通过比较说明了该算法比现有算法更加简便,最后应用于自动推导和证明微分几何中关于Riemann张量的一些公式.
This paper is concerned with the problem of complete classification of canonical forms of Riemann tensor expressions that obey Einstein summation convention. By the idea of index-structure-figuration, we prove that the Riemann tensor monomials, whose index-structure-figuration is composed of canonical index-circles are already in their canonical forms, and are the orthogonal invariants of Sakai-type Riemann tensor monomials of degree of no more than 5, and accordingly we obtain a complete classification of the monomials. This is the first result in literature with respect to the degree of more than 3. We also present a normalization algorithm, which is compared with the exiting algorithm and showed to be simpler and faster. Finally, we apply the algorithm to automatically deriving and proving some formulas involving Riemann tensors in differential geometry.
出处
《中国科学:数学》
CSCD
北大核心
2013年第4期399-408,共10页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:10871195)
上海高校选拔培养优秀青年教师基金(批准号:slgl0011)
上海理工大学博士启动基金(批准号:1D00303001)资助项目
关键词
n维符号计算
求和约定
Riemann张量
标准型
机器证明
n-D symbolic computation, Einstein summation convention, Riemann tensor, canonical form,mechanical theorem proving