1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.