期刊文献+

A Microscopic Convexity Principle for Spacetime Convex Solutions of Fully Nonlinear Parabolic Equations 被引量:2

A Microscopic Convexity Principle for Spacetime Convex Solutions of Fully Nonlinear Parabolic Equations
原文传递
导出
摘要 We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations. Under certain general structure condition, we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations. At last, we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows. We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations. Under certain general structure condition, we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations. At last, we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第4期651-674,共24页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10871187)
关键词 Spacetime convexity microscopic convexity principle constant rank theorem parabolicconvexity spacetime second fundamental form Spacetime convexity, microscopic convexity principle, constant rank theorem, parabolicconvexity, spacetime second fundamental form
  • 相关文献

参考文献1

二级参考文献18

  • 1Aeppli, A., On the uniqueness of compact solutions for certain elliptic differential equations, Proc. Amer.Math. Soc., 11, 1960, 832-836.
  • 2Alexandrov, A. D., Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ., 11, 1956,5- 17 = Amer. Soc. Trans. Set. 2, 21, 1962, 341-354.
  • 3Bakelman, I. and Kantor, B., Existence of spherically homeomorphic hypersurfaces in Euclidean space with prescribed mean curvature, Geom. Topol., Leningrad, 1, 1974, 3 10,
  • 4Caffarelli, L. A. and Friedman, A., Convexity of solutions of some semilinear elliptic equations, Duke Math.J., 52, 1985, 431-455.
  • 5Caffarelli, L. A., Nirenberg, L. and Spruck, J., Nonlinear second order elliptic equations IV: Starshaped compact Weingarten hypersurfaces, Current Topics in Partial Differential Equations, Y. Ohya, K. Kasahara and N. Shimakura (eds.), Kinokunize, Tokyo, 1985, 1-26.
  • 6Chou (Tso), K. S., On the existence of convex hypersurfaces with prescribed mean curvature, Ann. Sc.Norm. Super. Pisa Cl. Sci. (4), 16, 1989, 225- 243.
  • 7Delanoe, P., Plongements radiaux S^n→R^n+1 a courbure de Gauss positive prescrite, Ann. Sci. Ecole Norm. Sup. (4), 18, 1985, 635-649.
  • 8Gerhardt, C., Closed Weingarten hypersurfaces in space forms, Geometric Analysis and the Calculus of Variation, F. Fort (ed.), International Press, Boston, 1996, 71-98.
  • 9Guan, B. and Guan, P., Convex Hypersurfaces of Prescribed Curvature, Ann. of Math., 156, 2002, 655-674.
  • 10Guan, P. and Lin, C. S., On the equation det(uij +δiju) = uPf(x) on Sn, NCTS in Tsing-Hua University,2000, preprint.

共引文献4

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部