期刊文献+

A Class of Antimagic Join Graphs 被引量:4

A Class of Antimagic Join Graphs
原文传递
导出
摘要 A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an n-vertex graph with minimum degree at least r, and G2 is an m-vertex graph with maximum degree at most 2r - 1 (m ≥ n), then G1 V G2 is antimagic. A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an n-vertex graph with minimum degree at least r, and G2 is an m-vertex graph with maximum degree at most 2r - 1 (m ≥ n), then G1 V G2 is antimagic.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第5期1019-1026,共8页 数学学报(英文版)
基金 Supported by Fundamental Research Funds for the Central Universities(Grant No.2011B019) National Natural Science Foundation of China(Grant Nos.11101020,11171026,10201022and10971144) Natural Science Foundation of Beijing(Grant No.1102015)
关键词 Antimagic LABELING join graphs Antimagic, labeling, join graphs
  • 相关文献

参考文献7

  • 1Hartsfield, N., Ringel, G.: Pearls in Graph Theory: A Comprehensive Introduction, Academic Press, Mineola, New York, 1990.
  • 2Cheng, Y. X.: A new class of antimagic Cartesian product graphs. Discrete Mathematics, 308, 6441-6448 (2008).
  • 3Alon, N., Kaplan, G., Lev, A., et al.: Dense graphs are antimagic. J. Graph Theory, 47, 297-309 (2004).
  • 4Cranston, D. W.: Regular bipartite graphs are antimagic. J. Graph Theory, 60, 173-182 (2009).
  • 5Cray, I. D., Macdougall, J. A.: Vertex-magic total labelings of regular graphs II. Discrete Mathematics, 309, 5986-5999 (2009).
  • 6Hefetz, D.: Antimagic graphs via the combinatorial nullstellsatz. J. Graph Theory, 50, 263-272 (2005).
  • 7Pasles, P. C.: Benjamin Franklin's Numbers: An Unsung Mathematical Odyssey, Princeton University Press. Princeton. NJ. 2008.

同被引文献26

  • 1Hartsfield N, Ringel G. Pearls in Graph Theory [M]. Mineola, New York: Academic Press, 1990.
  • 2Wang T, Li D M, Wang Q. Some classes ofantimagic graphs with regular subgraphs [J]. Ars Combinatoria, 2013, 111: 241-250.
  • 3Gray I D. Vertex-magic total labelings of regular graphs [J]. Discrete Mathematics, 2007, 21: 170-177.
  • 4Cranston D W. Regular bipartite graphs are antimagic [J]. Graph Theory, 2009, 60: 173-182.
  • 5Cheng Y X. A new class of antimagic Cartesian product graphs [J]. Discrete Mathematics, 2008, 308:6441-6448.
  • 6Hefetz D. Antimagic graphs via the combinatorial NullStel- lenSatz [J]. Graph Theory, 2005, 50: 263-272.
  • 7Lo S, On edge-graceful labelings of graphs [J]. Congress Numer, 1985, 50: 231-241.
  • 8Gray I D. Vertex-magic total labelings of regular graphs [J]. Discrete Mathematics, 2007, 21: 170-177.
  • 9Gray I D, Macdougall J A. Vertex-magic total labelings of regular Graphs II [J]. Discrete Mathematics, 2009, 309: 5986-5999.
  • 10West D B. Introduction to Graphs Theory [M]. Second Edi- tion. Upper Saddle River N J: Prentice Hall, 2001.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部