期刊文献+

非自治常微分方程组周期解的存在性

The Existence of Periodic Solutions for Non-autonomous Ordinary Differential Equation Systems
下载PDF
导出
摘要 研究非自治常微分方程组周期解的存在性.当具有线性增长非线性项时,利用临界点理论中的极小作用原理得到了周期解存在性的充分条件,所得结果推广了已有结果. In this paper,we investigate the existence of periodic solutions for non-autonomous ordinary differential equation systems.With nonlinear item of linear increment,some sufficient conditions for the existence of periodic solutions are obtained by using the least action theorem in critical point theory,and the obtained results expand the existed outcome.
作者 张申贵
出处 《重庆工商大学学报(自然科学版)》 2013年第3期1-4,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金项目(71261022) 西北民族大学中青年科研项目(12XB38)
关键词 常微分方程组 周期解 临界点理论 ordinary differential equation systems periodic solutions critical point theory
  • 相关文献

参考文献6

二级参考文献22

  • 1WU X, CHEN SH X, TENG K M. On variational methods for a class of damped vibration problemsI [ J ]. Nonlinear Analysis, 2008,68:1432-1441.
  • 2BERGER M S, SCHECHTER M. On the solvability of semi-linear gradient operator equations [ J]. Adv Math, 1977,25:97-132.
  • 3MAWHIN J, WILLEM M. Critical Point Theory and Hamihonian Systems [ M]. Springer-Verlag, Berlin New York, 1989.
  • 4MAWHIN J. Semi-eoereive monotone variational problems[ J]. Acad Roy Belg Bull C1 Sei, 1987,73 (5) :118-130.
  • 5TAO ZH L, TANG CH L. periodie and subharmonie solutions of second order Hamihonian systems [ J ]. J Math Areal Appl, 2004,293 : 435- 445.
  • 6TANG C L. Periodic solutions of non-autonomous seeond order systems with 3,-quasisub-additive potential [ J ]. J Math Anal Appl, 1995,189:671-675.
  • 7TANG C L. Periodic solutions of non-autonomous second order systems [J]. J Math Anal Appl, 1996,202:465-469.
  • 8TANG C L. Periodic solutions for non-autonomous second order systems with sublinear nonlinearity [ J ]. Proc Amer Math Soc, 1998,126 : 3263-3270.
  • 9TANG C L, WU X P. Periodic solutions for second order systems with not uniformly coercive potential [ J ]. J Math Anal Appl, 2001,259:386-397.
  • 10WU X P,TANG C L. Periodic solutions of a class of non-antonomous second order systems [ J ]. J Math Anal Appl, 1999,236 227-235.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部