期刊文献+

带有非局部源和吸收项的P-Laplacian方程解的熄灭

Extinction of Solutions for the P-Laplacian Equation with Nonlocal Source and Absorption Item
下载PDF
导出
摘要 研究了方程ut-div(︱▽u︱p-2▽u)=λ∫Ωuq(x,t)dx-βur解的熄灭,当r=1时,熄灭临界指数是p-1=q,用Lp-积分范数估计方法考虑当r<1且p-1=q时解的熄灭情况,得到了解熄灭的充分条件和衰减估计. In this paper,the extinction of solutions for u, - div( |△u |P-2△u) = Afauq(x,t)dx -u is studied, when r = 1, it is known that the critical extinction exponent is p - 1 = q ; for r 〈 1 and p - 1 = q, the extinction of solutions are studied by using Lp - integral norm estimate method, and sufficient conditions about the extinction and decay estimates of solutions are obtained.
作者 熊针
出处 《重庆工商大学学报(自然科学版)》 2013年第4期1-4,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金(11071266)
关键词 P-LAPLACIAN方程 熄灭 非局部源 p-Laplacian equation extinction nonlocal source
  • 相关文献

参考文献15

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2张健.二维抛物问题解的熄灭与区域的相关性[J].四川师范大学学报(自然科学版),1995,18(4):1-3. 被引量:4
  • 3闫莉,穆春来.一类非线性抛物方程解的熄灭[J].四川大学学报(自然科学版),2006,43(3):514-516. 被引量:5
  • 4王凡彬.两类非线性发展方程组解的爆破和熄灭[J].重庆师范大学学报(自然科学版),2008,25(4):33-36. 被引量:2
  • 5ALAN V L. Finite extinction time for solutions of nonlinear parabolic equations[ J]. Nonlinear Aanlysis, 1993,21:1-8.
  • 6DIBENEDETI'O E. Degenerate Parabolic Equations [ M ]. New York: Springer, 1993.
  • 7KALASHNIKOV A S. The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption [ J ] USSR Comput, Math Math Phys, 1974,14:70-85.
  • 8ZHOU J, MU C L. Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source [ J ]. Bnll Korean Math Soc ,2009,46 : 1159-1173.
  • 9FERREIRA R, VAZQUEZ J L. Extinction behavior for fast diffusion equations with absorption [ J ]. Nonlinear Anal ,2001,43:943-985.
  • 10TIAN Y, MU C L. Extinction and non-extinction for a p-Laplacian equation with nonlinear source [ J ]. Nonlinear Anal, 2008,69: 2422-2431.

二级参考文献13

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部