期刊文献+

素数p在Q(^(2)(1/2)u)上的分解

Decomposition of Prime Ideal p over Q(^(2)(1/2)u)
下载PDF
导出
摘要 设Q为有理数域,F=Q(^(2)(1/2)u)(其中是奇素数,u∈N),OF为域F对应的代数整数环.运用局部域的方法彻底解决了任意素数p在代数整数环OF中的素理想的分解问题,并且完全确定素数p在OF中可能出现的素理想分解的具体形式. Assume Q as the field of rational number, F = Q (21u) ( l is an odd prime number and u N), OF is algebraic integer ring of the corresponding field F. In this paper,the problem of ideal decomposition of every prime number p in the algebraic integer ring OF has been completely solved by using the method of local field, and the possible specific type of decomposition of prime ideal p in OF has been completely determined.
出处 《重庆工商大学学报(自然科学版)》 2013年第4期8-12,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 素理想 局部域 Eisenstein多项式 prime ideal local field Eisenstein polynomial
  • 相关文献

参考文献4

二级参考文献23

  • 1薄丽玲,岳勤.素数在域Q(u~[1/(l^n)])上素理想分解[J].中国科学院研究生院学报,2006,23(5):588-592. 被引量:9
  • 2Erich Hecke. Lecture on Theory of Algebraic Number[M]. New York: Springer-Verlag, 1981.
  • 3Hao Y F, Gao E W, Zhang J X. Decomposition of prime ideal over Q(1√u) [J]. Journal of Mathematics, 2002,22(1):94-96.
  • 4Kenneth H Rosen. Elementary Number Theory and Its Applications[M]. Addision-Wesly Publishing Company, 1984.
  • 5Edwin Weiss. Algebraic Number Theory[M].McGraw-Hill Book Company, Inc, 1963.
  • 6Marcus D A. Number Fields[M]. New York: Springer-Verlag, 1977.
  • 7Jurgen Neukirch. Class Field Theory[M]. New York: Springer-Verlag, 1980.
  • 8HECKE E.Lecture on theory of algebraic number[M].New York:Springer-Verlag,1981.
  • 9WEISS E.Algebraic number theory[M].Columbus:McGraw-Hill Book Company Inc,1980.
  • 10潘成洞,潘成彪.初等数论:第二版[M].北京:北京大学出版社,2003.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部