期刊文献+

Van der Waerden函数的极值性及其应用

On Extreme Property of Van der Waerden Function and Its Application
下载PDF
导出
摘要 通过对Van der Waerden函数的讨论,证明Van der Waerden函数在所有的有限小数处取得极小值.给出了连续函数可以有无穷多但至多可数个极值点,并且这些极值点可以在定义域内稠密的结果.在推广了相关文献已有结论的同时,从极值分布的角度考察了常见的处处连续但处处不可导函数的相关特征. The property of Van der Waerden function was discussed in this paper and it is proved that the decimal fractions of limit digits are all the local minimum points of Van der Waerden function. It is deduced that the local extreme points of a continuous function can be infinite and at most denumerable, and the local extreme points can be dense in the domain of the continuous function. Thus the present result in the bibliography was ex- tended, and the character of the function which is continuous everywhere and derivable nowhere was illustrate in a new way.
作者 陈辉
出处 《绵阳师范学院学报》 2013年第2期1-3,31,共4页 Journal of Mianyang Teachers' College
关键词 极小值点 VAN der Waerden函数 稠密 WEIERSTRASS函数 Local minimum points Van der Waerden function dense Weierstrass function
  • 相关文献

参考文献3

二级参考文献6

  • 1Mandelbrot,B.B.The Fractal Geometry of Nature[M],Freeman,San Francisco,1982.
  • 2周性伟.实变函数[M].北京:科学出版社,2002.
  • 3华东师范大学数学系.数学分析[M].2版.北京:高等教育出版社,1991:175-220.
  • 4[1]E. Hewitt and K. Strombery, Real and Abstract Analysis-A Modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag, New York, 1978
  • 5同济大学数学教研室.高等数学[M].4版.北京:高等教育出版社,2002.205.
  • 6波利亚 G,金贵 G.数学分析中的问题与定理[M].上海:上海科学技术出版社,1981.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部