期刊文献+

两类微型制冷机的性能特征分析

Performance Characteristic Analysis for Two Kinds of Microscopic Refrigerators
下载PDF
导出
摘要 讨论了三态和五态制冷机模型。基于主方程,推导出2种微观制冷机制冷系数和制冷率的解析表达式,制冷率随制冷系数的变化关系是开型曲线。研究表明:三态以及五态模型制冷机的最大制冷率及对应的制冷系数均随热库温比单调增大;五态模型制冷机中的阶梯宽度对其制冷率和制冷系数的影响是单调递增。 Two kinds of microscopic models of three and five states refrigerators were discussed in this paper. Based on master equation, the analytical expressions for the coefficient of performance and the cooling rate of the microscopic refrigerators were deduced. The curve of the cooling rate versus the coefficient of performance was an opened curve. It was shown that the maximum cooling rate and the corresponding coefficient of performance of the three and five states refrigerator increased monotonously with the temperature ratio of the reservoirs. The influence of the ladder's width on the cooling rate and the coefficient of performance of the five states refrigerator was monotonous increase.
机构地区 南昌大学理学院
出处 《南昌大学学报(工科版)》 CAS 2013年第1期70-73,102,共5页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(11065008)
关键词 涨落理论 三态模型 五态模型 制冷机 fluctuation theory three states model five states model refrigerator
  • 相关文献

参考文献9

  • 1SCHMIEDI T, SEIFERT U. Efficiency at maximum pow- er: An analytically solvable model for stochastic heat en- gines[ J]. Eur Phys Lett,2008,81 (2) :304 - 308.
  • 2ASFAW M, BEKELE M. Energetics of a simple micro- scopic heat engine[ J]. Phys Rev E,2005,72 ( 5 ) :636 - 642.
  • 3程海涛,何济洲,肖宇玲.周期性双势垒锯齿势中温差驱动的布朗热机[J].物理学报,2012,61(1):53-58. 被引量:6
  • 4ESPOSITO M, KAWAI R, LINDENBERG K, et al. Quan- tum-dot carnot engine at maximum power [ J ]. Phys Rev E,2010,81 (4) :325 -331.
  • 5ESPOSITO M, LINDENBERG K, BROECK C V N. Ther- moelectric efficiency at maximum power in a quantum dot [ J ]. Eur Phys Lett,2009,85 ( 6 ) :428 - 434.
  • 6ESPOSITO M, LINDENBERG K, BROECK C V N. Uni- versality of efficiency at maximum power [J]. Phys Rev Lett,2009,102(3) :356 -361.
  • 7GAVEAU B, MOREAU M, SCHULMAN L S. Constrained maximal power in small enginesl J]. Phya Rev E,2010,82 (5) :459 -465.
  • 8KOSLOFF R,(;EVA E, GORDON J M, Quantum refrigera-tor in quest of the absolute zero [ J ]. J Appl Phys, 2000,87 ( II ) :8093 - 8097.
  • 9PALAO J P, KOSLOFF R, GORDON J M. Quantum thermo- dynamic cooling cycle [J ]. Phys Rev E, 2001,64 ( 5 ) : 545 - 553.

二级参考文献30

  • 1Reimann P .2002 Phys. Rep. 361 57.
  • 2Astumian R D, Hainggi P .2002 Phys. Today 55 33.
  • 3Van den Broeck C, Kawai R, Meurs P .2004 Phys. Rev. Lett. 93 090601.
  • 4Parrondo J M R, Blanco J M, Cao F J, Brito R .1998 Europhys. Lett. 43 248.
  • 5Parrondo J M R, de Cisneros B J .2002Appl. Phys. A 75 179.
  • 6Bouzat S, Wio H S .2004 Eur. Phys. J. B 41 97.
  • 7Feynman R P, Leighton R B, Sands M 1966 The Feynman Lectures on Physics I (Reading MA: Addison-Wesley) 46.1-46.9.
  • 8Velasco S, Roco J M M, Medina A, Calvo HernLrldez A .2001 J. Phys. D: Appl. Phys. 34 1000.
  • 9Btittiker M 1987 J. Phys. B 68 161.
  • 10van Kampen N G 1988 IBM J. Res. Dev. 32 107.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部