期刊文献+

基于希尔伯特-黄变换的双馈异步风力发电机定子故障诊断研究 被引量:9

Study of Stator Inter-turn Short Fault Diagnosis of DFIG-Based Wind Turbines Based on Hilbert-Huang Transform
下载PDF
导出
摘要 当双馈风力发电机定子绕组发生轻微匝间短路时,故障引起的信号变化十分微弱,三相定子电流的时域波形变化微小,而根据希尔伯特-黄变换(HHT)分析获取信号的时频表示,在故障时刻的突变很明显,从而提取故障特征。在动模实验室进行实验,获取定子在匝间短路瞬变过程的电流信号,对其进行经验模态分解(EMD),提取6层模态分量(IMF)进行Hilbert变换。实验结果显示,不论风机在空载、半载以及额定负载下,在匝间短路开始时,根据第4或者第5层IMF分量的瞬时幅值可以确定出匝间短路的发生,从而可以进行及时的维修,具有一定的工程应用价值。 When occurrence of doubly-fed wind generator stator winding slight inter-turn short circuit, the signal mutation caused by fault is very weak, the three-phase stator current changes very little, but the HHT analysis can obtain the time-frequency representation of the signal, it has obvious change when the fault occurs. So the fault signature can be found. The paper makes test in the dynamic model and simulation laboratory to obtain the current signal when the inter-turn short fault occurs. Empirical mode decomposition (EMD) is used, and to extract six Intrinsic modes to do their Hilbert-Huang transform. Experimental results show that instantaneous amplitude of the fourth or fifth Intrinsic mode determines if inter-turn short fault occurs or not, at no-load, half-load and rated load. It helps timely maintenance in practice, and has possibility in inter-turn short fault diagnosis.
出处 《大电机技术》 北大核心 2013年第2期34-38,共5页 Large Electric Machine and Hydraulic Turbine
基金 国家自然科学基金项目(51177039) 教育部博士点基金项目(20090944110011)
关键词 双馈异步电机 匝间短路故障 希尔伯特-黄变换 模态函数 瞬时幅值 DFIG inter-turn short fault Hilbert-Huang transform the Intrinsic Mode instantaneous amplitude
  • 相关文献

参考文献12

  • 1Popa L M, Jensen B B, Ritchie E, et al. Condition monitoring of wind generators [C]//Industry Applications Conference, 2003. 38th IAS AnnualMeeting. Conference Record of the. IEEE, 2003, 3: 1839-1846.
  • 2Vas P. Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines (Monographs in Electrical and Electronic Engineering)[M]. London, UK: Oxford Univ. Press, 1993.
  • 3Nandi S, Toliyat H A. Condition monitoring and fault diagnosis of electrical machines-a review[C]//Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE. IEEE, 1999, 1: 197-204.
  • 4Thomson W T, Fenger M. Current signature analysis to detect induction motor faults[J]. Industry Applications Magazine, IEEE, 2001, 7(4): 26-34.
  • 5魏书荣,符杨,马宏忠.双馈风力发电机定子绕组匝间短路诊断与实验研究[J].电力系统保护与控制,2010,38(11):25-28. 被引量:36
  • 6Gritli Y, Stefani A, Filippetti F, et al. Stator fault analysis based on wavelet technique for wind turbines equipped with DFIG[C]//Clean Electrical Power, 2009 International Conference on. IEEE, 2009: 485-491.
  • 7Zhang Z, Ren Z, Huang W. A novel detection method of motor broken rotor bars based on wavelet ridge[J]. Energy Conversion, IEEE Transactions on, 2003, 18(3): 417-423.
  • 8Douglas H, Pillay P, Ziarani A K. A new algorithm for transient motor current signature analysis using wavelets[J]. Industry Applications, IEEE Transactions on, 2004, 40(5): 1361-1368.
  • 9宋志明,霍永红,荀堂生,王莉,高湛军,丛伟,崔昊,付兆远.基于小波变换的HVDC输电系统故障诊断研究[J].电力系统保护与控制,2012,40(3):100-104. 被引量:7
  • 10杨露,沈怀荣.希尔伯特-黄变换与小波变换在故障特征提取中的对比研究[J].兵工学报,2009,30(5):628-632. 被引量:18

二级参考文献28

共引文献75

同被引文献68

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部