期刊文献+

在线参数辨识的脉冲噪声有源控制 被引量:1

Active Control of Impulsive Noise Based on On-line Parameter Identification
下载PDF
导出
摘要 有源噪声控制是一种主动控制方法,目前已广泛应用于对高斯分布噪声进行衰减。但是传统的用于控制噪声的自适应算法不再适用大多数服从非高斯分布的脉冲噪声,主要原因是这种脉冲噪声没有有限的二阶统计量。在经典的Filter-x LMS算法的基础上提出两种适用于服从非高斯分布尖峰脉冲噪声情况下的在线参数辨识方法,一种是利用在线参数辨识方法对服从SαS稳定分布的脉冲噪声进行特征指数的估计,进而实现降噪目的的FxLMPest和FxLMADadapt算法;另一种是在Sun等人提出的SKM和AM算法基础上利用在线递归过程实现对幅度阈值估计的BDP算法。这两种算法均不需要获得脉冲噪声的特征指数和阈值的先验信息,仿真分析结果表明这两种算法能有效抑制脉冲噪声,并且其鲁棒性明显好于Filter-x LMS算法。 Active noise control is a kind of active control methods and has been widely used to attenuate the noise which yields Gaussian distribution. But for most of non-Ganssian impulsive noises, the traditional adaptive algorithms are not appropriate for controlling the impulsive noise. The main reason is that there is no finite second-order moment for the impulsive noise. In this paper, two kinds of on-line parameter identification algorithms based on the classical Filter-x LMS algorithm were presented which are appropriate for non-Gaussian impulsive noise. One is FxLMPest and FxLMADadapt algorithms based on on-line parameters identification to estimate characteristics exponent of impulsive noise with an S a S distribution, and the other is BDP algorithm based on SKM and AM algorithms presented by Sun et al, which uses a simple on-line recursive procedure to estimate amplitude thresholds. Both methods do not need prior information of characteristics exponent and amplitude thresholds of impulsive noise. And the simulation results also show that the two methods can effectively suppress the impulsive noise, and its robust performance is significantly better than Filter-x LMS algorithm.
出处 《噪声与振动控制》 CSCD 2013年第2期138-143,共6页 Noise and Vibration Control
基金 国家自然科学基金委员会项目(11172047) 北京市属高等学校人才强教深化计划资助项目(PHR201106131)
关键词 声学 有源噪声控制 脉冲噪声 Α稳定分布 在线参数辨识 acoustics active noise control impulsive noise α -stable distribution on-line parameters identification
  • 相关文献

参考文献11

  • 1Kuo S M, Design of active control system the TMS320 family[M]. New York:Wiley, 1996.
  • 2胡博,杨德森.SαS分布在分析水中冲击噪声中的应用[J].声学技术,2006,25(2):134-139. 被引量:4
  • 3C. L. Nikias, M. shao. Signal processing with alpha stable distribution and application [J]. New York : John Wiley & Sons. Inc, 1995.
  • 4M. Shao, C L. Nikias. Signal processing with fractional lower moments:stable processes and their applications [J]. Proceedings of the IEEE, 1993, 1(7): 987 -1010.
  • 5Sun X, Kuo S M, Meng G. Adaptive algorithm for active control of impulse noise[J]. Journal of Sound and Vibration, 2006,291 (1-2):516-522.
  • 6Akhtar M T, Mitsuhashi W. Improving performance of Fx LMS algorithm for active noise control of impulsive noise [J]. Journal of Sound and Vibration, 2009, 327 (3-5): 647-656.
  • 7Akhtar M T, Mitsuhashi W. Improving performance of FxLMS algorithm for active noise control of impulsive noise [J]. Journal of Sound and Vibration, 2009, 327(3-5): 647-656.
  • 8Wu Lifu, He Hongsen, Qiu Xiaojun. An active impulsenoise control algorithm with logarithmic transformation [J]. IEEE Trans on Audio, Speech and Language Processing, 2011, 19(4): 1041-1044.
  • 9Leahy R, Zhou Zhenyu, Hsu Y C. Adaptive filtering of stable process for active attenuation of impulsive noise[C]. Proceedings of the 1995 International Conference on Acoustics Speech and Signal Processing, 1995:2983-2986.
  • 10Marco Bergamasco, Luigi Piroddi. Active noise control of impulsive noise using online estimation of an alpha-stable model[C]. 49 ,h IEEE Conference on Decision and Control, 2010, Dec 15-17.

二级参考文献8

  • 1Nikias C L,Shao M.Signal Processing with Alpha-Stable Distributions and Applications[M].New York:Wiley & Sons,1995.1-10.
  • 2Nolan J P,wami A.Proceedings of Applications of Heavy Tailed Distributions in Economics,Engineering and Statistics[M].Washington,D.C:American University,1999.26-37.
  • 3Kidmose P.Alpha-stable distributions in signal processing of audio signals[A].In proceedings of the 41'st Conference on Simulation and Modeling:Scandinavian Simulation Society[C],2000.87-94.
  • 4Ma X,Nikias C L.Parameter estimation and blind channel identification in impulsive signal environments[J].IEEE Trans on Signal Processing,1995,43(12):2884-2897.
  • 5Maymon S.A new method for estimating parameters of a skewed alpha-stable distribution[A].In Proc.Int.Conf.Acoustics,Speech,and Signal Processing[C].2000,6(6):3822-3825.
  • 6Xia G.The improved algorithms to estimate a of alphastable distribution based on empirical characteristic function[A].In Proc.6th Int.Conf.Sig.Process[C].2002,1(8):82-185.
  • 7Veitch J G.Wicks A R.A characterization of arctic undersea noise[J].J Acoust Soc America,1985,77(3):989-999.
  • 8Tsakalides P.Nikias C L.Maximum likelihood localization of sources in noise modeled as a stable process[J].IEEE Trans on Signal Processing,1995,43(11):2700-2713.

共引文献3

同被引文献9

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部