期刊文献+

声响信号分析的柴油机故障诊断方法 被引量:2

Fault Diagnosis Method for Diesel Engines Based on Sound Signal Analysis
下载PDF
导出
摘要 柴油机声响信号中蕴含了丰富的柴油机异常或故障状态信息。部件磨损、零件松动、配合间隙增大、装配不当和断裂损坏时,均会伴随着各种异常声响。有经验的维修人员凭借耳听结合个人经验就可以判断出故障部位及原因。通过实时检测和采集柴油机工作时的声响信号,并运用数字滤波、小波变换和功率谱分析法从中提取和分离异常的声响信号,对其进行量化分析,提取故障声音的特征参数,从而识别故障的类型。 Sound signal of diesel engines contains a lot of abnormal information and fault information. For example, worn-out and failure of components, parts loosing, clearance increasing and poor assemblage will cause various abnormal sounds. The experienced experts can determine the positions and reasons of the faults by listening to the abnormal sounds with their own experiences. This paper used a new method to detect and collect the real-time sound signals of the diesel engines. Digital filtering, wavelet transforms and power spectrum analysis were applied to extract and separate the different sound signals. Meanwhile, abnormal sound signals were analyzed quantitatively in order to extract the characteristic parameters and identify the faults.
出处 《噪声与振动控制》 CSCD 2013年第2期161-165,共5页 Noise and Vibration Control
关键词 振动与波 柴油机 声响信号 滤波 小波变换 功率谱 vibration and wave diesel engine sound signal filtering wavelet transform power spectrum.
  • 相关文献

参考文献6

二级参考文献26

  • 1秦萍,阎兵,华春蓉,谭达明.基于振动监测的静载荷滑动轴承接触摩擦故障诊断实验研究[J].摩擦学学报,2004,24(4):364-368. 被引量:7
  • 2赵纪元,何正嘉,孟庆丰,程正兴.小波包—自回归谱分析及在振动诊断中的应用[J].振动工程学报,1995,8(3):198-203. 被引量:24
  • 3杜元虎,何成辉,王晓梅.小波理论与振动分析[J].东北林业大学学报,1997,25(3):60-64. 被引量:4
  • 4程正兴.小波分析算法及应用[M].西安:西安交通大学出版社,1998..
  • 5[1]黄少竹.船舶柴油机故障分析及诊断技术[M].大连:大连海事大学出版社,2005.
  • 6崔锦泰[美] 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 7James R,Reber B,Baird B,et al.Acoustic instrumentation technique predicts mechanical failures[J].The Oil & Gas Journal,1973,73:49.
  • 8Hawman M W,Galianitis W S.Acoustic emission monitoring of rolling element bearings[J].Ultrasonics Symposium,1988:885.
  • 9Berrymann F,Michie P,Smulders A K.Vermeiren condition monitoring-a new beginning-a method of monitoring machines using a high frequency acoustic emission technique[C].1989 Condition Monitoring and Preventive Maintenance proceedings STLE SP-27,1989,144.
  • 10Rogers M.The application of vibration signature analysis and acoustic emission source location to on-line condition monitoring of anti-friction bearings[J].Tribology International,1979:51-56.

共引文献25

同被引文献11

  • 1陈太文.船舶柴油机[M]{H}北京:人民交通出版社,1994.
  • 2JONATHAN S S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Inteface, 2005,2 (5) : 444-450.
  • 3HAN H G, QIAO J F. Adaptive computation algorithm for RBF neural network IEEE Transactions on Neural Networks and Learning Systems, 2012,23 (2) : 342-347.
  • 4NIROS A D, TSEKOURAS G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems,2012(193): 62-84.
  • 5LIU S C, ZHANG Y F, MAP H, et al. A novel spatial interpolation method based on the integrated RBF neural network[J]. Procedia Environmental Sciences,2011 (10) :568-575.
  • 6LI C S, ZHOU J Z. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm[J]. Energy Conversion and Management, 2011,52 ( 1 ) : 374-381.
  • 7SIMONHK.神经网络原理[M].叶世伟,史忠植,译.北京:机械工业出版社,2004:92-99.
  • 8朱发新,蔡振雄,卢金树,王家宏,张志斌.船用柴油机故障诊断系统研究[J].浙江海洋学院学报(自然科学版),2011,30(1):61-65. 被引量:6
  • 9刘涛涛,潘宏侠.应用改进的LMD和小波降噪于滚动轴承故障诊断[J].噪声与振动控制,2014,34(2):152-157. 被引量:8
  • 10陈鹏,陈晓宁,王征.现代柴油机故障诊断方法发展[J].机电技术,2014,0(6):154-156. 被引量:9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部