期刊文献+

基于ANN耦合遗传算法的爆破方案选择方法 被引量:38

Selection of Blast Scheme Based on Coupling of Genetic Algorithm and Artificial Neural Network
下载PDF
导出
摘要 为预防露天矿爆破引起的事故,基于安全和经济方面的考虑,对露天矿爆破方案进行优化选择,提出将人工神经网络(ANN)模型与遗传算法(GA)相耦合,从而进行爆破方案优化。研究露天矿爆破可能引起的2种主要危害形式:超爆和飞石,进而确定超爆深度和飞石距离为爆破方案的被优化目标参数。另一方面,炮眼深、间距、装药深度、阻塞深度、单位炸药消耗量和钻孔率对超爆深度和飞石距离的影响是复杂的、非线性的,因而将其作为爆破方案的影响参数。分别用影响参数和目标参数作为ANN的输入值和输出值加以训练,训练后的ANN数据作为GA的适应度函数进行方案优化。结果表明:可找到符合工程实例数据的爆破方案集合,借助Pareto图,可得到相关参数的值最小(超瀑深度为0.6999m,飞石距离为27.3386m)的最优爆破方案。 In order to prevent the accidents caused by open iron mine blast/ng, taking safety economic factors into consideration, a method based on coupling of ANN and GA was worked out and to optimize and select the blast scheme. The backbreak and flyrock, the two main blasting damaging and used phenomena, were researched, and then backbreak depth and flyrock distance were taken as object parameters; hole length, spacing, burden, stemming, powder factor and specific drilling were taken as impact parameters. The effects of impact parameters on backbreak depth and rlyrock distance are complex nonlin- ear. The object parameters and the impact parameters were taken respectively as ANN input value and out- put value to train it. The data of the artificial neural network trained as the fitness function of GA were used to optimizing the blasting scheme. The results show that the blasting scheme set according with actual data can be found with the method, and that with Pareto, the optimal blasting scheme (flyrock distance 27. 338 6 m and backbreak depth 0. 699 9 m) can be obtained.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2013年第2期64-68,共5页 China Safety Science Journal
基金 辽宁省重点实验室项目(LS2010075)
关键词 人工神经网络(ANN) 遗传算法(GA) 适应度函数选择 采矿爆破 爆破方案选择 artificial neural network(ANN) genetic algorithm(GA) fitness function selection mining blast blasting scheme selection
  • 相关文献

参考文献15

  • 1Singh T N, Singh Virendra. An intelligent approach to prediction and control of ground vibration in mines[J]. Geotechni- cal & Geological Engineering, 2005,23 (3):249- 262.
  • 2吴春平,刘连生,窦金龙,张光权.爆破飞石预测公式的量纲分析法[J].工程爆破,2012,18(2):26-28. 被引量:13
  • 3王丹丹,池恩安,詹振锵,和铁柱.爆破飞石产生原因事故树分析[J].爆破,2012,29(2):119-122. 被引量:20
  • 4章萌,章卫国,孙勇.多目标强度Pareto混沌差分进化算法[J].控制与决策,2012,27(1):41-46. 被引量:19
  • 5孙炜锋,谭成轩,王志明,张春山,吴树仁.基于BP神经网络的深埋隧洞地应力预测研究[J].地质力学学报,2007,13(3):227-232. 被引量:9
  • 6王建.前馈神经网络梯度学习算法收敛性分析[D].大连:大连理工大学,2012.7.
  • 7Everitt B S. The Cambridge Dictionary of Statistics[ M]. New York: Cambridge University Press,2006:211 -212.
  • 8Hecht-Nielsen R. Kolmogorov's mapping neural network existence theorem[ C] . Proceedings of the First IEEE Internation- al Conference on Neural Networks. SanDiego, 1987:11 -14.
  • 9Seibi A, A1-Alawi S M. Prediction of fracture toughness using artificial neural networks (ANNs) [J]. Engineering Frac- ture Mechanics,1997,56(3) :311 -319.
  • 10Kanellopoulas I, Wilkinson G G. Strategies and best practice for neural net-work image classification[J~. International Journal of Remote Sensing, 1997,18 (2) : 711 - 725.

二级参考文献29

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:198
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3李广文.进化算法及其在飞行控制系统中的应用[D].西安:西北工业大学,2007.
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 5Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Lausanne: Swiss Federal Institute of Technology Computer Engineering and Networks Laboratory, 2001.
  • 6Rainer S, Price K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4):341-359.
  • 7Abbass H, Sarker R, Newton C. PDE: A Pareto-frontier differenttial evolution approach for multi-objective optimization problems[C]. Proc of IEEE Congress on Evolutionary Computation. Sebul: IEEE Press, 2001: 971'- 978.
  • 8Madavan N K. Multiobjective optimization using a Pareto differential evolution approach[C). IEEE Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 2002:1145-1150.
  • 9Robic T, Filipic B. DEMO: Differential evolution for multiobjective optimization[C]. Lecture Notes in Computer Science. Berlin: Springer, 2005: 520-533.
  • 10Deb Kalyanmoy. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. IEEE Trans on Evolutionary Computation, 1999, 7(3): 205-230.

共引文献55

同被引文献314

引证文献38

二级引证文献238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部