期刊文献+

基于计算机视觉的钢板测量系统研究 被引量:3

Study of a measurement system for steel plates based on computer vision
下载PDF
导出
摘要 工业视觉测量系统中,目标钢板缺少纹理特征,所以提出了一种点阵结构光方法来测量钢板的三维形状.对钢板分别投影一些点阵和相对应的平行线,用两个相机拍摄照片,采用SURF算法提取投影特征点,通过线结构光把点阵编码,然后加入极线几何约束算出相匹配的特征点,重建三维投影点.之后采用一种基于几何特征的点云数据过滤方法,分割出投影在钢板上的点云.最后经过坐标变换,与实际测量结果比较检验误差.实验结果表明该方法有效可行. Because the target steel plate in Industrial vision measuring system is texture less,this paper presents a point-array structured light method for measurement of 3D shape of steel plate.Some points and parallel lines were projected on the steel plate.Two cameras were used to take pictures.This method first used SURF algorithm to extract these projected feature points.Secondly,it coded point-array by using line structured light.Thirdly,it calculated the matching feature points for reconstruction of three-dimensional projected points based on epipolar geometry constraint.After that,it segmented point cloud projected on the steel plate by using a filtering method of point cloud data based on geometric characteristic.At last,measurement error was tested compared with actual measurement after coordinate transformation.The experimental result shows that the method is feasible and effective.
作者 王直 赵越超
出处 《江苏科技大学学报(自然科学版)》 CAS 2013年第1期70-73,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 船用钢板 结构光 视觉测量 hull steel structured light vision measurement
  • 相关文献

参考文献5

二级参考文献16

共引文献65

同被引文献31

  • 1沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007.
  • 2张鸣远.高等工程流体力学[M].西安:西安交通大学出版社,2008.
  • 3Gonzalez R C.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2005.
  • 4周光垌.流体力学[M].北京:北京:高等教育出版社,2011:225.
  • 5张树,褚艳利.GPU高性能运算之CUDA[M].北京:清华大学出版社,1997.
  • 6Ko B C,Park J,Nam J Y. Spatiotemporal bag of features for early wildfire smoke detection[ J]. Image and Vision Computing,2013,31:786 - 795.
  • 7Yuan Feiniu. A double mapping framework for extrac- tion of shape-invariant featuresbased on multi-scale par- titions with AdaBoost for video smoke detection [ J]. Pat- tern Recognition,2012,45:4326 - 4336.
  • 8Gubbi J, Marusic S, Palaniswami M. Smoke detection in video using wavelets and support vector machines[ J ]. Fire Safety Journal ,2009,44 : 1110 - 1115.
  • 9Tung T X, Kim J M. An effective four stage smoke detec- tion algorithm using video images for early fire alarm systems [ J ]. Fire Safety Journal ,2011,46:276 - 282.
  • 10Yu C, Mei Z,Zhang X. A real time video fire flame andsmoke detection algorithm [ J ]. Procedia Engineering, 2013,62:89 - 898.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部