期刊文献+

基于线性判别分析的数据集可分性判定算法 被引量:5

Data set Separability Discriminant Algorithm Based on Linear Discriminant Analysis
下载PDF
导出
摘要 训练数据集的可分性判别是机器学习领域的一个重要研究内容。本文针对该问题,提出了一种基于线性判别分析的数据集可分性判别算法。该算法首先对待判断的训练数据集进行线性判别分析,求得最佳投影直线,然后将原始样本投影到最佳投影直线上,根据投影点的位置关系判断训练数据集的可分性。在人造数据集实例上的检测结果,充分证明了本文判定算法的正确性。 The separability discrimination of training data set is an important research in machine learning field.For this question,in this paper,we proposed a data set separability discriminant algorithm based on linear discriminant analysis.The algorithm firstly performed linear discriminant analysis on training data set,and obtained the best projection line.Then project the original samples onto the best projection line,and judge the separability of the training set according to the distribution of projections.The test results of artifical data set examples fully verify the correctness of the proposed algorithm.
作者 徐尽
出处 《科技通报》 北大核心 2013年第4期31-32,35,共3页 Bulletin of Science and Technology
关键词 可分性 判别算法 线性判别分析 投影直线 separability discriminant algorithm linear discriminant analysis projection line
  • 相关文献

参考文献2

二级参考文献16

  • 1张铃,张钹,吴福朝.神经网络的规划学习算法[J].计算机学报,1994,17(9):669-675. 被引量:13
  • 2Vapnik V N. The Nature of Statistical Learning Theory [M]. New York :Springer, 1998.
  • 3Lin Chun-Fu,Wang Sheng-De. Fuzzy Support Vector Machines [J]. IEEE Transaction On Networks,2002,13 (2) :464-471.
  • 4PAWLAK Z W. Rough sets and intelligent data analysis [J ]. Information Science, 2002,147 (1-4) : 1-12.
  • 5Hsu Chih-Wei,Lin Chih-Jen. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks 2002,13(2):415-425.
  • 6Tang Fa-Ming. Study of Support Vector Machines Algorithm Based on Statistical Learning Theory [D]. Huazhong University of Science and Technology: Ph.D. Dissertation, 2005.
  • 7Zhao Hui. Study on Support Vector Machines Classification methods and their Application in Text Categorization [D]. Dalian University of Technology: Ph.D. Dissertation, 2005.
  • 8Drucker H,IEEE Trans Neural Networks,1999年,10卷,5期,1048页
  • 9Zhang Ling,IEEE Trans Neural Networks,1999年,10卷,4期,925页
  • 10Amari S,Neural Networks,1999年,12卷,783页

共引文献47

同被引文献37

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2杨敏,匡武英.印章与签名分离的图像处理算法研究[J].警察技术,2007(3):42-43. 被引量:1
  • 3Pawlak Z I. Rough sets[J]. International Journal of ParallelProgramming, 1982,11 (5): 341-356.
  • 4Japkow Iczn, Stephen S. The class imbalance problem: asystematic study [J]. Intelligent Data Analysis Journal,2002,6 (5): 429-450.
  • 5Domngos P. METACOST: a general method for makingclassifiers cost sensitive [C]//. Proceedings of the 5 th In-ternational Conference on Knowledge Discovery and DataMining. San Diego, CA:ACM Press, 1999: 155-164.
  • 6Han J W, Kamber M著.范明译.Data Mining Concepts andTechnique(第二版)[M].北京:机械工业出版社,200.1:257-259.
  • 7Cortes C, Vapnik V. Support vector networks [J]. MachineLearning, 1995, 20: 273-297.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning rep-resentations by back -propagating errors [J]. Nature,1986,323 (6088): 533-536.
  • 9Plaza A,Plaza J,Paz A,et al.Parallel Hyperspectral Image and Signal Processing[J] .IEEE Signal Processing Magazine,2011(28): 119-126.
  • 10Landgrebe D.Signal Theory Methods in Multispectral Remote Sensing[M].New Jersey:Wiley,2003.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部