期刊文献+

基于动态模糊微分模型的PID优化算法 被引量:2

PID Optimization Algorithm Based on the Dynamic Fuzzy Differential Model
下载PDF
导出
摘要 传统PID控制由于依赖于对象的数学模型和控制参数难以精确整定,针对非线性系统的控制过程中,控制系数很难达到最优。为此提出了一种基于T-S动态模糊微分模型的PID优化算法,利用T-S动态模糊模型对PID中的微分参数进行最优化求解,运用最优的模糊隶属度函数对PID中的微分参数进行最佳解的计算。从而解决PID控制的鲁棒性差及受模型限制的问题,实验仿真结果表明,该控制算法有较强的PID算法的抗干扰和适应参数变化及鲁棒性和自适应性,取得了不错的效果。 The traditional PID control because depends on the object's mathematical model and control parameters difficult to precise setting,in view of the nonlinear system control process,control factor is difficult to achieve optimal.Therefore proposed based on T-S fuzzy differential dynamic model PID optimization algorithm,the use of T-S fuzzy model to the dynamic differential PID parameter optimization algorithm,using the optimal fuzzy membership function to the differential PID parameters for the calculation of optimal solution.PID control so as to solve the robustness of difference and the model limit problem,experimental simulation results show that the control algorithm has strong PID algorithm of anti-interference and adapt to the parameter change and robustness and adaptability,has obtained the good effect.
作者 张鹤琼
出处 《科技通报》 北大核心 2013年第4期100-102,共3页 Bulletin of Science and Technology
基金 省级课题(GZY12C36)
关键词 PID参数整定 T-S模型 模糊控制 PID parameter setting t-s model fuzzy control
  • 相关文献

参考文献2

二级参考文献11

  • 1杨金明,吴捷,杨俊华.基于自抗扰控制器的风力发电系统的最大风能捕获控制[J].太阳能学报,2004,25(4):525-529. 被引量:18
  • 2钟斌,程文明,唐连生,张则强.随动系统的模糊自适应整定PID变阻尼控制[J].系统仿真学报,2006,18(11):3200-3203. 被引量:10
  • 3夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95. 被引量:78
  • 4西安冶金建筑学院 同济大学.热工测量与自动调节[M].北京:中国建筑工业出版社,1983..
  • 5Slootweg J G,Kling W L. Aggregated Modelling of Wind Parks in Power System Dynamics Simulations[J]. Power Tech Conference Proceedings, 2003,3: 23-26.
  • 6Sakamoto R, Senjyu T, Urasaki N. Output Power Level- ing of Wind Turbine Generators Using Pitch Angle Control for all Operating Regions in Wind Farm Intelligent Systems Application to Power Systems[A]. in: Proceedings of the 13th International Conference[C]. 2005.467-475.
  • 7HUI Li, Shi K L, McLaren P G. Neural-network-based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient Industry Applications[J] IEEE Trans, 2005,41(6): 1548 - 1556.
  • 8SUN Yao-jie, KONG Long-yun, SHI Wei-xiang. Robust Sliding Mode Control of Variable-speed Wind Power System[J]. Power Electronics and Motion Control Conference, 2004, 3: 1712- 1716.
  • 9Bati A F, Leabi S K. NN Self-tuning Pitch Angle Controller of Wind Power Generation Unit[J]. Power Systems Conference and Exposition, 2006,29:2019-2029.
  • 10Senjyu, T, Sakamoto R, Urasaki N. Output Power Leveling of Wind Farm Using Pitch Angle Control with Fuzzy Neural Network[A]. in:Power Engineering Society General Meeting[C]. 2006.18-22.

共引文献84

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部