期刊文献+

基于电器元件敏感模型的嵌入式电源设计方法

Embedded Power Supply Design Method Based on the Embedded Electrical Components Sensitive Model
下载PDF
导出
摘要 针对工业控制中嵌入式电源的应用广泛,应用的环境复杂,大中小型的电源功耗不断的提高,急需降低电源的能量消耗的问题。提出了基于电器元件敏感模型的降低嵌入式电源能耗的方法。利用工业控制电源工作的时候频率属性和工作电压变化规律,计算出电源功耗最低的时候,元器件和敏感性的平衡点,使得电源在敏感性最优状态下工作,进而达到降低能耗的目的。实验表明。利用这种敏感性模型,能够有效降低以ARM7和ARM9为核心芯片为主的嵌入式电源的功耗,取得令人满意的效果。 Embedded in the industrial control in the power of the widely used, the application of complex environment, and small power consumption continuously improve, in need of reduce the energy consumption of the power supply prob- lem. Based on the electrical components of the sensitive model embedded power energy consumption reduction. Using in- dustrial control power supply working frequency properties and working voltage variation, calculated the lowest power consumption, components and sensitivity of the balance, makes the power supply work in the sensitivity of the optimal condition. To attain the goal of reducing energy consumption. The experimental results show that. By using the sensitivity of the model, can effectively reduce the ARM7 and ARM9 as the core chip embedded power consumption of the Lord, obtain a satisfactory result.
作者 胡德清
出处 《科技通报》 北大核心 2013年第4期204-206,共3页 Bulletin of Science and Technology
基金 四川省经济和信息化委员会项目(2011XM065)
关键词 嵌入式电源 敏感性 降低能耗 embedded power supply sensitivity reduce energy consumption
  • 相关文献

参考文献5

二级参考文献37

  • 1Samer W G V, Saab S and Mickle M H. Learning control algorithms for tracking slowly varying trajectories [J]. IEEE Trans. on System, Man and Cybernetics, 1997,27 : 657-670.
  • 2Arif M,Ishihara T, and Inooka H. Incorporation of Experience in Iterative Learning Controllers Using Locally Weighted Learning [J]. Automatiea,2001,37:881-888.
  • 3Xu J X and Xu J. On Iterative Learning From Different Tracking Tasks in The Presence of Time-varying Uncertainties [J]. IEEE Trans. on System,Man,Cybernetics, 2004,33:589-597.
  • 4XU J X. Direct Learning of Control Efforts For Trajectories With Different Magnitude Scales [J]. Automatica, 1997,33(12) :2191-2195.
  • 5XU J X. Direct Learning of Control Efforts For Trajectories With Different Time Scales [J]. IEEE Trans. on Automatic Control, 1998,43 (7) : 1027-1030.
  • 6张茁生.刘贵忠.非平稳信号自适应表示的理论、算法及应用[M].西安:西安交通大学,2001.
  • 7Sanner M and Slotine J. Gaussian Networks For Direct Adaptive Control [J]. IEEE Trans. on Neural Networks, 1992,3 (6) : 837-863.
  • 8Sanner M and Slotine J. Stable Adaptive Control and Reeursive Identification Using Radial Gaussian Networks [C]//Proc. of the 30th Conference on Decision and Control. Brighton, England, 1991:2116-2123.
  • 9Cheng S T,Chen C M,Hwang J W.Low-power design for real-time systems[J].Real-Time Systems,1998,15:131-148.
  • 10Chae D H,Han K H,Lim K S,et al.Power saving mobility protocol for sensor network[A].Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS'04)[C].Vienna,Austria:IEEE Computer Society,2004.122-126.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部