期刊文献+

从非线性与统计物理多重角度探讨数值地震预测

Quantitative earthquake prediction from the perspectives of nonlinear and statistical physics
原文传递
导出
摘要 在科技文献中,地震常被比喻为非线性动力学过程或统计物理中的相变过程。文章探讨了如何从非线性力学中的分岔理论以及统计物理内的朗道相变理论出发,从势磊穿越,临界涨落与临界慢化等多个角度来分析和了解地震发生的全过程。文章作者试图在这些非线性力学与统计物理的基础上,综合地震过程中在时间与空间上应出现的前兆,解释如何可能做出具有普适性的数值地震预测。 In the scientific literature we frequently find earthquakes referred to as a bifur- cation in nonlinear dynamics or a phase transition in statistical physics. In this article we exam- ine how we can understand earthquake processes in terms of barrier crossing, critical fluctuations, and critical slowing down, starting from our understanding of bifurcation theory in nonlinear dynamics and Landau' s theory of phase transitions in statistical physics. We will then explain how quantitative earthquake prediction is possible, combining universal spatial and temporal signatures that must occur prior to a large earthquake.
作者 张寿安
出处 《物理》 CAS 北大核心 2013年第4期263-271,共9页 Physics
关键词 分岔 相变 临界涨落 临界慢化 bifurcation, phase transitions, critical fluctuations, critical slowing down
  • 相关文献

参考文献24

  • 1Kanamori H, Brodsky E E. Physics Today, 2001,54 (6) : 34.
  • 2Gutenberg B, Richter C F. Bulletin of the Seismological Society of America, 1944,34: 185.
  • 3Phillips J D. Geomorphology, 1992, 5:219.
  • 4Somette D, Sammis C G. Journal de Physique I, 1995,5 : 607.
  • 5Bowman D D, Ouillon G, Sammis C G et al. Journal of Geophysical Research, 1998,103 : 24359.
  • 6Murdock J. Normal forms and unfoldings for local dynamical systems. Springer, 2002.
  • 7Hoffmann K H, Tang Q. Ginzburg-Landau phase transition theory and superconductivity. Birkhauser, 2001.
  • 8Van der Pol B. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1927, 2:978.
  • 9Scheffer M, Bascompte J, Brock W A et al. Nature, 2009, 461:53.
  • 10Hirota M, Holmgren M, Van Nes E H et al. Science, 2011,334:232.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部