期刊文献+

求解非线性方程根四阶收敛的迭代格式 被引量:2

A Fourth-Order Iterative Method for Solving Non-Linear Equations
原文传递
导出
摘要 提出了求解非线性方程根新的四阶收敛迭代方法,新方法每次迭代只需要两次函数计算,一次一阶导数值计算,效能指数达到1.587.通过几个数值算例来解释该方法的有效性. In this paper, we present a new fourth-order iterative method for solving nonlinear equations. Per iteration the new method requires two evaluations of the function and one evaluation of its first derivative.and the efficiency index equal to 1.587. Several numerical examples are given to illustrate the efficiency and performance of some of the presented methods.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第7期236-240,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(51075346 11261057)
关键词 非线性方程 NEWTON方法 迭代方法 四阶收敛 non-linear equations newton's method iterative method fourth order convergence
  • 相关文献

参考文献11

  • 1Richard I, Burden J, Douglas Faires. Numerical analysis(Seventh Edition)[M]. Beijing.. Higher Education Press, 2001: 47-103.
  • 2Veerakoon S, Fernando T G I. A variant of Newton's method with accelerated third-order conver- ,~ence[J]. Appl Math Lett, 2000(30): 87-93.
  • 3Ozban A Y. Some new variants of Newton's method[J]. Appl Math Lett, 2004(17): 677-682.
  • 4Frontini M, Sormani E. Some variants of Newton's method with third-order convergence[J]. J Com- put Appl Math, 2004(140): 419-426.
  • 5Homeier H H. On Newtomtype methods with cubic convergence[J]. J Comput Appl Math, 2005(176): 425-432.
  • 6Potra F A, Pta ' k V. Nondiscrete induction and iterative processes[J]. Research Notes in Mathe- matics, 103, Pitman, Boston, 1984(5): 112-119.
  • 7Changbum Chun A simply constructed third-order modifications of Newton's method[J]. Journal of Computational and Applied Mathematics, 2008(219): 81-89.
  • 8Chun C. Construction of Newton-like iteration methods for solving nonlinear equations[J]. Numer. Math, 2006, 104(3): 297-315.
  • 9Noor M A, Ahmad F. Fourth-order convergent iterative method for nonlinear equation[J]. Applied Mathematics and Computation, 2006(182): 1149-1153.
  • 10Sharma J R, Goyal R K. Fourth-order derivative-free methods for solving non-linear equations[J]. Int J Comput Math, 2006, 83 (1): 101-106.

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部