摘要
提出了求解非线性方程根新的四阶收敛迭代方法,新方法每次迭代只需要两次函数计算,一次一阶导数值计算,效能指数达到1.587.通过几个数值算例来解释该方法的有效性.
In this paper, we present a new fourth-order iterative method for solving nonlinear equations. Per iteration the new method requires two evaluations of the function and one evaluation of its first derivative.and the efficiency index equal to 1.587. Several numerical examples are given to illustrate the efficiency and performance of some of the presented methods.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第7期236-240,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(51075346
11261057)
关键词
非线性方程
NEWTON方法
迭代方法
四阶收敛
non-linear equations
newton's method
iterative method
fourth order convergence