摘要
A Zr-β-FeOOH adsorbent for both As(Ⅴ) and As(Ⅲ) removal was prepared by a chemical co-precipitation method. Compared with β-FeOOH, the addition of Zr enhanced the adsorption capacities for As(Ⅴ) and As(Ⅲ), especially As(Ⅲ). The maximum adsorption capacities for As(Ⅲ) and As(Ⅴ) were 120 and 60 mg/g respectively at pH 7.0, much higher than for many reported adsorbents. The adsorption data accorded with Freundlich isotherms. At neutral pH, for As(Ⅴ), adsorption equilibrium was approached after 3 hr, while for As(Ⅲ), adsorption equilibrium was approached after 5 hr. Kinetic data fitted well to the pseudo second-order reaction model. As(Ⅴ) elimination was favored at acidic pH, whereas the adsorption of As(Ⅲ) by Zr-β-FeOOH was found to be effective over a wide pH range of 4-10. Competitive anions hindered the adsorption according to the sequence: phosphate 〉 silicate 〉 bicarbonate 〉 sulfate 〉 nitrate, while Ca2+ and Mg2+ increased the removal of As(Ⅲ) and As(Ⅴ) slightly. The high adsorption capability and good performance in other aspects make Zr-β-FeOOH a potentially attractive adsorbent for the removal of both As(Ⅲ) and As(Ⅴ) from water.
A Zr-β-FeOOH adsorbent for both As(Ⅴ) and As(Ⅲ) removal was prepared by a chemical co-precipitation method. Compared with β-FeOOH, the addition of Zr enhanced the adsorption capacities for As(Ⅴ) and As(Ⅲ), especially As(Ⅲ). The maximum adsorption capacities for As(Ⅲ) and As(Ⅴ) were 120 and 60 mg/g respectively at pH 7.0, much higher than for many reported adsorbents. The adsorption data accorded with Freundlich isotherms. At neutral pH, for As(Ⅴ), adsorption equilibrium was approached after 3 hr, while for As(Ⅲ), adsorption equilibrium was approached after 5 hr. Kinetic data fitted well to the pseudo second-order reaction model. As(Ⅴ) elimination was favored at acidic pH, whereas the adsorption of As(Ⅲ) by Zr-β-FeOOH was found to be effective over a wide pH range of 4-10. Competitive anions hindered the adsorption according to the sequence: phosphate 〉 silicate 〉 bicarbonate 〉 sulfate 〉 nitrate, while Ca2+ and Mg2+ increased the removal of As(Ⅲ) and As(Ⅴ) slightly. The high adsorption capability and good performance in other aspects make Zr-β-FeOOH a potentially attractive adsorbent for the removal of both As(Ⅲ) and As(Ⅴ) from water.
基金
supported by the Special Co-construction Project of Beijing Municipal Commission of Education
the National Natural Science Foundation of China (No.51221892,21125731)