摘要
基于Sims关于复系数二阶线性微分方程的开创性工作,进一步研究了二阶J-对称微分算式的Weyl函数与Weyl解,得到了若干个与实系数情形类似的新结论.
Based on the pioneering work of Sims on a second-order linear differential equation with a complex coefficient, the second-order J-symmetric differential expression of Weyl function and Weyl solution was studied further. Some new conclusions were obtained, the properties of the second-order J-symmetric differential expression of Weyl function and Weyl solution were similar to that of the real coefficient.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第2期152-156,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
广东省高层次人才项目资金资助
关键词
J-对称微分算式
J-自伴算子
极限点
极限圆
WEYL函数
Weyl解
J-symmetric differential expression
J-self-adjoint operator
the limit-point classification
the limit-circle classification
Weyl function
Weyl solution