期刊文献+

类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术 被引量:52

TALE nuclease engineering and targeted genome modification
下载PDF
导出
摘要 人工构建的序列特异性核酸内切酶能够识别并切割特定的DNA靶序列,造成双链断裂,从而引起基因组结构的定点改变。人工核酸内切酶技术使得研究人员有可能对任意物种的基因组进行定点修饰,开启了反向遗传学研究的新天地。类转录激活因子效应物核酸酶(Transcription activator-like effector nuclease,TALEN)自2010年底开始成功应用于基因打靶,很快成为一种比锌指核酸酶(Zinc-finger nuclease,ZFN)更容易设计、特异性更高和毒性更低的人工核酸内切酶。文章综述了TALEN技术的研究进展及应用前景,重点介绍TALEN的结构、作用机制与构建方法和利用TALEN进行基因组定点修饰的策略,以及目前利用这一技术已成功实现突变的物种及内源基因,特别是在斑马鱼中的应用,为开展这一领域的研究工作提供参考。 Artificial designer nucleases targeting specific DNA sequences open up a new field for reverse genetics study. The rapid development of engineered endonucleases (EENs) enables targeted genome modification theoretically in any species. The construction of transcription activator-like effector nucleases (TALENs) is simpler with higher specificity and less toxicity than zinc-finger nucleases (ZFNs). Here, we summarized the recent progresses and prospects of TALEN tech- nology, with an emphasis on its structure, function, and construction strategies, as well as a collection of species and genes that have been successfully modified by TALENs, especially the application in zebrafish.
出处 《遗传》 CAS CSCD 北大核心 2013年第4期395-409,共15页 Hereditas(Beijing)
基金 国家重大科学研究计划项目(编号:2011CBA01000和2012CB945101) 国家自然科学基金项目(编号:31110103904)资助
关键词 类转录激活因子效应物(TALE) 类转录激活因子效应物核酸酶(TALEN) 人工核酸内切酶(EEN) 基因组编辑 基因组定点修饰 transcription activator-like effector (TALE) transcription activator-like effector nuclease (TALEN) engineered endonuclease (EEN) genome editing targeted genome modification
  • 相关文献

参考文献6

二级参考文献178

  • 1Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc NatlAcadSci USA, 1996, 93(3): 1156-1160.
  • 2Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys, 2010, 43(1): 1-21.
  • 3Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IlIA from Xenopus oocytes. EMBOJ, 1985, 4(6): 1609-1614.
  • 4Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000, 29(6): 183-212.
  • 5Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol, 2005, 23(8): 967-973.
  • 6Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809 817.
  • 7Fu FL, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF. Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res, 2009, 37(Suppl 1): D279-D283.
  • 8Jayakanthan M, Muthukumaran J, Chandrasekar S, Chawla K, Punetha A, Sundar D. ZifBASE: a database of zinc finger proteins and associated resources. BMC Genomics, 2009, 10(1): 421.
  • 9Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey R J, Hirsh AS, Eichtinger M, Fu FL, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc, 2006, 1(3): 1637-1652.
  • 10Dreier B, Beerli RR, Segal D J, Flippin JD, Barbas CF Ill. Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2001, 276(31): 29466-29478.

共引文献126

同被引文献440

引证文献52

二级引证文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部