期刊文献+

高斯分布激光前向转印Cu薄膜形貌及机理 被引量:4

Morphology and Mechanism of Gaussian Distributed Laser Induced Forward Transfer Cu Film
原文传递
导出
摘要 激光诱发前向转印技术,作为一种微加工手段,具有制备微小结构的能力,目前已经成为微细加工领域的研究热点。通过改变高斯分布激光脉冲功率密度,进行了Cu薄膜在石英玻璃表面的转印实验,并对转印沉积薄膜进行了光学显微镜、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表面氧化状态分析,探讨了激光脉冲功率密度与沉积薄膜的尺寸、特殊形貌以及薄膜厚度均匀性的关系,并在此基础上研究了激光转印Cu薄膜的机理。结果表明,当激光平均脉冲功率密度达到1×105 W/cm2时,Cu薄膜的转印才可以发生。随着激光脉冲功率密度的增加,转印Cu薄膜尺寸增加,并由薄膜转变为圆环形,最终尺寸达到一定值。激光转印薄膜表层10nm以下,基本上没有氧化发生。薄膜附着在基板上,连接紧密,并未观察到明显的扩散迹象。 As a method of micro fabrication, laser induced forward transfer (LIFT) technology can be used to make microstructures. Presently, the fabrication process has become a popular issue in the field of micro-machining. A Cu thin film is transferred from one quartz substrate to another quartz substrate by regulating the pulse power density of Gaussian distributed laser beam. The transferred Cu thin film is characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray photoelectron microscopy (XPS) analysis. The relationship between pulse power density of laser beam and size, special morphology and uniformity of transferred Cu film is discussed, and the oxidation condition of the transferred Cu film is also studied. Moreover, the mechanism of the transferred process is analyzed based on the results. It is found that the Cu film transfer process can be realized when the average pulse power density of laser beam reaches 1x10^5 W/cm2. With the increase of pulse power density of laser beam, the size of transferred Cu film is also enlarged, and reaches a certain value at last with the morphology transforming from plane to crater-shape. Almost no oxidation phenomenon is observed on the Cu when transferred Cu film is sputtered off 10 nm in thickness. The transferred film adheres well to the target substrate, and no obvious diffusion phenomenon is observed between Cu film and the target quartz substrate.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第3期157-162,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(51005058) 先进焊接与连接国家重点实验室开放基金资助课题
关键词 薄膜 形貌及界面 激光诱发前向转印 微结构制造 thin films morphology and interface laser induced forward transfer micro structure fabrication
  • 相关文献

参考文献22

  • 1王俊俏,张心正,孙立萍,齐继伟,谭信辉,张学智,蔡卫,李威,孙骞,孔勇发,许京军.激光诱导银纳米颗粒薄膜和微结构[J].中国激光,2011,38(1):174-178. 被引量:13
  • 2罗乐,汪毅,储雅琼,高健,方晓东,陶汝华.氮气压强对脉冲激光沉积类金刚石薄膜和红外光学特性的影响[J].中国激光,2011,38(9):143-148. 被引量:6
  • 3郑晋翔,郑晓华,沈涛,杨芳儿,宋仁国.递进式脉冲激光沉积CN_x薄膜的组织结构与摩擦学特性[J].中国激光,2012,39(6):155-160. 被引量:9
  • 4J. Bohandy, B. F. Kim, F. J. Adrian. Metal deposition from a supported metal film using an excimer laser[J]. J. Appl. Phys. , 1986, 60(4): 1538-1539.
  • 5F. J. Adrian, J. Bohandy, B. F. Kim et al.. A study of the mechanism of metal deposition by the laser-induced forward transferprocess[J]. J. Vac. Sci. Technol. B, 1987, 5(5):1490-1494.
  • 6S. Bera, A. J. Sabbah, J. M. Yarbrough et al.. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films[J]. Appl. Opt., 2007, 46(21):4650-4659.
  • 7Li Yang, Chingyue Wang, Xiaochang Ni et al.. Aluminum film microdeposition at 775 nm by femtosecond laser-induced forward transfer[J]. Chin. Opt. Lett. , 2007, 5(5): 308-310.
  • 8A. Palla-Papavlu, V. Dinea, C. Luculescu et al.. Laser induced forward transfer of soft materials[J]. J. Opt. , 2010, 12(12): 124014.
  • 9J. Shaw-Stewart, B, Chu, T. Lippert et al.. Improved laser- induced forward transfer of organic semiconductor thin films by reducing the environmental pressure and controlling the suhstrate- substrate gap width[J]. Appl. Phys, A, 2011, 105(3): 713-722.
  • 10B. Hopp, T. Smausz, G. Szabo et al.. Femtoseeond laser printing of living cells using absorbing film-assisted laser induced forward transfer[J]. Opt. Eng. , 2012, 51(1): 014302.

二级参考文献46

  • 1辛火平,石晓红,朱宏,林成鲁,邹世昌.高剂量N^+注入碳膜形成氮化碳CNx的研究[J].核技术,1996,19(2):90-92. 被引量:2
  • 2贾少杰,徐抒平,郑先亮,赵冰,徐蔚青.激光诱导沉积银膜制备光纤SERS传感器[J].高等学校化学学报,2006,27(3):523-526. 被引量:8
  • 3马志斌.氮化碳晶体的研究进展[J].新型炭材料,2006,21(3):277-284. 被引量:7
  • 4Koichi Awazu, Makoto Fujimaki, Carsten Rockstuhl et al.. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide [J]. J. Am. Chem. Soc., 2008, 130(5):1676-1680.
  • 5Heather M. Yates, Lucy A. Brook, David W. Sheel. Photoactive thin silver films by atmospheric pressure CVD [J]. Int. J. Photoenergy, 2008, 2008:870392.
  • 6Hyung-Jun Jeon, Sung-Chul Yi, Seong-Geun Oh. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method [J]. Biomaterials, 2003, 24(27):4921-4928.
  • 7S. Strehle, S. Menzel, J. W. Bartha et al.. Electroplating of Cu(Ag) thin films for interconnect applications [J]. Microelectron. Eng., 2010, 87(2):180-186.
  • 8H. Cui, P. Liu, G. W. Yang. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering [J]. Appl. Phys. Lett., 2006, 89(15):153124.
  • 9Erik J. Bjerneld, K. V. G. K. Murty, Juris Prikulis et al.. Laser-induced growth of Ag nanoparticles from aqueous solutions [J]. Chem. Phys. Chem., 2002, 3(1):116-119.
  • 10Deborah Lau, Scott Furman. Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction [J]. Appl. Surf. Sci., 2008, 255(5):2159-2161.

共引文献23

同被引文献24

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部