期刊文献+

基于相位差复指数变换的传声器多声源定位 被引量:1

Multiple sound source localization of microphones based on complex exponential transform of phase differences
下载PDF
导出
摘要 为了提高多声源定位的性能并且避免针对高频段相位差的去卷绕处理,提出了一种基于相位差复指数变换的传声器多声源定位算法.首先,挑选出信噪比较大的频点,以提高算法对噪声的鲁棒性,并对被挑选出的频点作相位差复指数变换;然后,基于语音信号在时-频域的稀疏性,将被挑选出的频点聚类至各声源;最后,利用各声源包含的频点构建代价函数,使得代价函数最小的假设时延差即为估计的声源时延差.仿真结果表明,该算法充分利用了高频段的相位信息,无需对高频段相位差进行去卷绕处理.相比广义硬聚类算法,该算法收敛速度更快,定位成功率更高,均方根误差更小. To improve the performance of multiple sound source localization and avoid the phase-unwrapping process at high frequencies,a localization algorithm for multiple sound sources of two microphones based on complex exponential transform of phase differences is proposed.First,the reliable frequency points with high signal-to-noise are selected to enhance the robustness of the proposed method against noise.The inter-channel phase differences(IPDs) of the selected frequency points are converted with complex exponential transform.Then,the selected frequency points are clustered into groups corresponding to multiple sources based on speech's sparse attribute in time-frequency domain.Finally,the assumed time-delay difference which minimizes the cost function building on the frequency points of each source is the estimated time-delay difference of the source.The simulation results show that the proposed algorithm takes full advantage of the high-frequency phase information without phase-unwrapping process for IPDs at high frequencies.Compared with the generalized hard clustering algorithm(GHCA),the proposed algorithm has a faster convergence speed,and obtains a higher percentage of successful estimates and a lower root mean square error.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期231-235,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60971098 61201345)
关键词 声源定位 稀疏性 相位差 相位卷绕 复指数变换 sound source localization sparsity phase differences phase wrapping complex exponential transform
  • 相关文献

参考文献11

  • 1Yang C H, Hu J S. Estimation of sound source number and directions under a multisource reverberant environment [J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010: 870756-1-870756-1.
  • 2Lombard A, Zheng Y, Buchner H, et al. TDOA estimation for multiple sound sources in noisy and reverberant environments using broadband independent component analysis [J]. IEEE Transactions on Audio, Speech and Language Processing, 2011, 19(6): 1490-1503.
  • 3Cai Weiping, Zhao Xiaoyan, Wu Zhenyang. Localization of multiple speech sources based on sub-band steered response power [C]//IEEE International Conference on Electrical and Control Engineering. Wuhan, China, 2010: 1246-1249.
  • 4Araki S, Sawada H, Mukai R, et al. DOA estimation for multiple sparse sources with arbitrarily arranged multiple sensors [J]. Journal of Signal Processing Systems, 2009, 63(3): 265-275.
  • 5Swartling M, Sallberg B, Grbic N. Source localization for multiple speech sources using low complexity non-parametric source separation and clustering [J]. Signal Processing, 2011, 91(8): 1781-1788.
  • 6Liu C, Wheeler B C, OBrien J W D, et al. Localization of multiple sound sources with two microphones [J]. Journal of the Acoustical Society of America, 2000, 108(4): 1888-1905.
  • 7Zhang W, Rao B D. A two microphone-based approach for source localization of multiple speech sources [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(8): 1913-1928.
  • 8Yilmaz O, Rickard S. Blind separation of speech mixtures via time-frequency masking [J]. IEEE Transactions on Signal Processing, 2004, 52(7): 1830-1846.
  • 9Aoki M, Okamoto M, Aoki S, et al. Sound source segregation based on estimating incident angle of each frequency component of input signals acquired by multiple microphones [J]. Acoustical Science and Technology, 2001, 22(2): 149-157.
  • 10Chen J F, Ser W. Speech detection using microphone array [J]. Electronics Letters, 2000, 36(2): 181-182.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部