期刊文献+

基于压缩感知的云存储系统状态监测方法 被引量:1

State detection method for cloud storage system based on compressive sensing
下载PDF
导出
摘要 为了解决大规模状态监测数据处理中高精度与大规模之间的矛盾,利用压缩感知处理宽带信号优于奈奎斯特采样定律的特性,提出了一种适合于测量云存储系统状态的压缩感知状态监测方法 SDCS.该方法是在经典匹配追踪MP算法的基础上,增加贝努利矩阵行和为零的约束条件而得到的,可用于测量含直流分量的稀疏信号,并保证原始的重构算法依然满足改进后的目标函数.然后,利用仿真实验测评了该方法在蚁群文件系统FFS状态监控中的应用效果.实验测试结果表明,针对稀疏度为10的状态信息,当测量次数大于70时,所有异常结点可被精确定位,且压缩比率达到3.5%,说明该方法能有效压缩监测流量,满足大规模数据高精度检测的要求. To solve the contradiction between precision and scale when dealing with large-scale data,by means of compressive sensing in signal processing which is superior to the Nyquist,a method called SDCS(state detection with compressive sensing) for detecting the state of cloud storage system is proposed.Based on the typical MP(matching pursuit) algorithm,this method is developed by adding the constraint condition that the sum of the rows in Bernoulli measurement matrix equals zero.The SDCS can measure sparse signals containing direct current component and ensure the equivalence between the improved target function and the original one.Then,this method is applied to state detection of FFS(formicary file system).The experimental results show that for the status signs with the sparse degree of 10,when the number of detection is more than 70,all the abnormal nodes can be fixed accurately and the compression ratio is 3.5%,indicating that this method can improve the efficiency of locating the abnormal nodes and satisfy the requirement of high precision detection for the large scale system.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期296-300,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61070174)
关键词 云存储 压缩感知 SDCS 状态重构 状态监测 cloud storage compressive sensing SDCS(state detection with compressive sensing) status reconstruction status detection
  • 相关文献

参考文献11

  • 1Kung H T, Lin C K, Vlah D. CloudSense: continuous fine-grain cloud monitoring with compressive sensing[C]//Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing. Portland, OR, USA, 2011:15-19.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006(3): 1433-1452.
  • 4Lei L, Wo T Y, Hu C M. CREST: towards fast speculation of straggler tasks in MapReduce[C]//Proceedings of the IEEE 8th International Conference on E-business Engineering. Beijing, China, 2011: 311-316.
  • 5Tom White. Hadoop: the definitive guide[M]. Sebastopol, CA, USA:ORelly Media Inc, 2011: 170-173.
  • 6Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Computes Rendus Mathematique, 2008, 346(9/10): 589-592.
  • 7Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 8Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3): 253-263.
  • 9Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive Approximation, 1997, 13(1): 57-98.
  • 10Wu Haijia,Chen Weiwei,Hu Guyu. FFS: a PB-level cloud-storage system based on network [J]. Journal on Communications, 2011, 32(9): 24-33.

二级参考文献7

  • 1Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. In: Proceedings of the 19th ACM Symposium on operating systems principles, Bohon Landing, NY,2003.
  • 2Tom White. Hadoop:the definitive guide Sebastopol. CA: O' Reilly Media, 2009.
  • 3Gideon Juve, Ewa Deelman, Karan Vahi, et ol. Data sharing options for scientific workflows on amazon EC2. In: 2010 International Conference for High Performance Computing, Networking, Storage and Analysis(SC), New Orleans, LA, 2010.
  • 4Chappell D. Introducting windows azure,2009.
  • 5楚才.TFS简介.http://rdc.taobao.com/blog/cs.
  • 6叶伟等.互联网时代的软件革命:SaaS架构设计.北京:电子工业出版社.2010.
  • 7Klosterman A J, Ganger G. Cuckoo: layered clustering for NFS. Technical Report CMU-CS-02-183. Carnegie Mellon University, 2002.

共引文献5

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部