摘要
在-30~600℃之间进行了ADS嬗变系统候选结构材料T91铁素体/马氏体钢的拉伸试验研究,分析了温度对拉伸曲线、强塑性、瞬时加工硬化率曲线的影响,通过SEM与TEM观察了样品在不同温度拉伸后的断口形貌和显微组织。结果表明,3种不同的机制分别控制着不同温度区间的变形。在-30~100℃之间,变形机制与螺位错热激活滑移和其它热激活过程有关;在150~375℃之间,材料发生动态应变时效,导致塑性出现低谷,强度下降速率减缓,加工硬化能力增强;在400~600℃之间,动态应变时效消失,动态回复过程控制着材料的变形行为,材料强度迅速下降,塑性快速上升,加工硬化能力减弱。
The effect of temperature on the tensile properties of one of the promising candidate materials for ADS, T91 ferritic/martensitic steel, was investigated in the temperature interval - 30-600 ℃ The evolution of tensile flow curves, strength, ductility and instantaneous work hardening rate curves with temperature were analyzed. SEM observation of the fracture surface and TEM observation of the microstrueture of samples deformed at different temperatures were carried out. The results show that three different deformation mechanisms are operative on three different temperature periods respectively. Between - 30 ℃ and 100 ℃, the deformation mechanism is linked to thermally activated gliding of screw dislocations and other thermal activation processes. Between 150 ℃ and 375 ℃ , DSA ( dynamic strain ageing) takes place, which results in a trough of ductility, drop of the rate of strength decreasing and increase of work hardening ability. Between 400 ℃ and 600 ℃ , dynamic recovery controlls the deformation behavior, leading to dramatic decrease of strength, fast increase of ductility and decrease of work hardening ability.
出处
《金属热处理》
CAS
CSCD
北大核心
2013年第4期6-11,共6页
Heat Treatment of Metals
基金
中科院战略性先导科技专项子课题(XDA03010301
XDA03010300)
国际热核聚变实验堆(ITER)计划专项课题(2009GB109002)
中科院知识创新工程项目(KJCX2-YW-N35)
关键词
T91铁素体/马氏体钢
拉伸性能
变形温度
变形机制
T91 ferritic/martensitic steel
tensile properties
deformation temperature
deformation mechanism