期刊文献+

On First Returning Time and Last Exit Time of a Class of Markov Chain

On First Returning Time and Last Exit Time of a Class of Markov Chain
原文传递
导出
摘要 Let {Xn} be a Markov chain with transition probability pij =: aj-(i-1)+,i,j ≥ 0, where aj=0 providedj 〈 0, a0 〉 0, a0+a1〈 1 and ∑∞n=0 an= 1. Let μ∑∞n=1nan. It is known that {Xn} is positive recurrent when μ 〈 1; is null recurrent when μ= 1; and is transient when μ 〉 1. In this paper, the integrability of the first returning time and the last exit time are discussed. Keywords Geom/G/1 queuing model, first returning time, last exit time, Markov chain Let {Xn} be a Markov chain with transition probability pij =: aj-(i-1)+,i,j ≥ 0, where aj=0 providedj 〈 0, a0 〉 0, a0+a1〈 1 and ∑∞n=0 an= 1. Let μ∑∞n=1nan. It is known that {Xn} is positive recurrent when μ 〈 1; is null recurrent when μ= 1; and is transient when μ 〉 1. In this paper, the integrability of the first returning time and the last exit time are discussed. Keywords Geom/G/1 queuing model, first returning time, last exit time, Markov chain
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第2期331-344,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11001070,11101113) Zhejiang Provincial Natural Science Foundation(Grant No.R6090034)
关键词 Geom/G/1 queuing model first returning time last exit time Markov chain Geom/G/1 queuing model, first returning time, last exit time, Markov chain
  • 相关文献

参考文献11

  • 1Karlin, S., Taylor, H. M. : A First Course in Stochastic Processes, Academic Press, New York, 1975.
  • 2Hou, Z. T., Guo, Q. F.: Homogeneous Markov Processes, Science Press, Beijing, 1978.
  • 3Bremaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues, Springer-Verlag, New York, 1999.
  • 4Tian, N. S., Xu, X. L., Ma, Z. Y.: Discrete Time Queuing Theory, Science Press, Beijing, 2008.
  • 5Sato, K., Watanabe, T.: Moments of last exit times for L@vy processes. Ann. Inst. H. Poincard Probab. Statist., 40(2), 207-225 (2004).
  • 6Zhao, M. Z., Zhang, H. Z.: The weighted transience and recurrence of Markov processes. Acta Mathematica Sinica, English Series, 23(1), 111-126 (2007).
  • 7Zhao, M. Z.: The first returning speed of null recurrent Markov chains. Chineses Ann. Math. Set. A, 27(6), 761-770 (2006).
  • 8Jones, D. V.: Geometric ergodicity in denumerable Markov chains. Quart. J. Math., 13(2), 928 (1962).
  • 9Kingman, J. F. C.: The exponential decay of Markov transition probabilities. Proc. London Math. Soc., 13(3), 337-358 (1963).
  • 10Isaacson, D., Colwell, P.: Levels of null persistency for Markov chains. J. Appl. Probab., 19, 425-429 (1982).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部