期刊文献+

三维多孔石墨烯/铂钯双金属杂化体作为高性能的甲醇氧化电催化剂 被引量:8

Three Dimensional Porous Graphene/PtPd Bimetallic Hybrids as High-performance Electrocatalyst for Methanol Oxidation
原文传递
导出
摘要 通过简便的溶剂热还原方法以及冰模板自组装技术,成功构建了三维多孔石墨烯/铂钯双金属杂化体.三维多孔的结构以及可调的组成成分赋予这种杂化体大的比表面积和高的催化活性,使其展现了较高的催化甲醇氧化的能力,为构筑新型高效的甲醇燃料电池催化剂提供了一个新的平台. The development of fuel cells is highly dependent on the exploration of the efficient electrocatalyst.However,up to now,constructing high-quality hybrids with large electrochemical surface area(ECSA) through a facile method has remained a great challenge.In this paper,a novel approach for producing three dimensional porous graphene/PtPd bimetallic hybrids was developed by combining the solvothermal strategy with the ice template technique.First,a simple solvothermal route were employed for preparing PtPd bimetallic nanoparticle supported on graphene(PPG) hybrids by simultaneously forming bimetallic nanoparticles and reducing graphene oxide(GO).Then,three dimensional porous graphene/PtPd bimetallic hybrids are obtained via the ice templation of an aqueous suspension comprised of the PPG and phthalic acid diethylene glycol diacrylate(PDDA).The as-prepared 3D PPG were characterized by transmission electron microscopy(TEM),high-resolution TEM(HRTEM),X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy and electrochemical technique.It is interesting to find that the loading of PtPd bimetallic nanoparticles on the surface of graphene could be controlled by simply changing the initial weight ratio of the precursors.Furthermore,the hydrophilicability of PDDA plays an important role on the fabrication of 3D porous graphene/PtPd bimetallic hybrids.Most importantly,this special morphology endows the 3D PPG hybrids with larger ECSA and more catalytic sites compared with the PPG and commercial E-TEK Pt/C catalysts,and thus leads to much higher catalytic activity towards methanol oxidation reaction.The details are shown as follows.(a) The ECSA value of the as-prepared 3D PPG hybrids is tested to be 98.7 m2 g-1,while the ECSA values of PPG and E-TEK Pt/C catalysts are tested to be 61.3 and 46.5 m2 g-1,respectively.(b) The mass current density for methanol oxidation in 3D PPG hybrids is higher than those of PPG and E-TEK Pt/C catalysts and the corresponding potential on 3D PPG hybrids is much lower than that on PPG and E-TEK Pt/C catalysts at a given oxidation current density.(c) The as-prepared 3D PPG hybrids catalyst exhibits greater poisoning tolerance than the PPG and E-TEK Pt/C catalysts during methanol oxidation.All results reveal that these 3D PPG hybrids can provide a new and versatile platform for the development of high-performance electrocatalyst for methanol oxidation.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2013年第4期579-584,共6页 Acta Chimica Sinica
基金 国家基础研究973(No.2010CB933600)资助~~
关键词 石墨烯 双金属 燃料电池 冰模板 溶剂热 graphene bimetal fuel cell ice template solvothermal
  • 相关文献

参考文献35

  • 1Formo, E.; Lee, E.; CampbelL, D.; Xia, Y. N. Nano Lett. 2008, 8, 668.
  • 2Sun, S. H.; Jaouen, F.; Dodelet, J. P. Adv. Mater. 2008, 20, 3900.
  • 3Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Angew. Chem., Int. Ed. 2004, 43, 1540.
  • 4Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. 3. Am. Chem. Soc. 2007, 129, 6974.
  • 5Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732.
  • 6Yamauchi, Y.; Sugiyama, A.; Morimoto, R.; Takai, A.; Kuroda, K. Angew. Chem., Int. Ed. 2008, 47, 5371.
  • 7Yamauchi, Y.; Takai, A.; Nagaura, T.; lnoue, S.; Kuroda, K. J. Am. Chem. Soc. 2008, 130, 5426. Wang, L..; Yamauchi, Y. J. Am. Chem. Soc. 2009, 131, 9152.
  • 8Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Carbon 2010, 48, 1124.
  • 9Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Nat. Commun. 2011, 2, 292.
  • 10Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y.; Aksay, 1. A.; Liu, J. Electrochem. Commun. 2009, 11, 954.

同被引文献72

  • 1钱勇之.单晶硅太阳电池的新进展[J].稀有金属,1993,17(1):55-60. 被引量:2
  • 2Novoselov K S,Geim AK,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
  • 3Gao LN,Yue W B,TaoSS,et al.Novel strategy for preparation of graphene-Pd,Pt composite,mid its enhanced electrocatalytic activity for alcohol oxidation[J].Langmuir,2013,29(3):957-964.
  • 4Matsuoka K,Inaba M,Iriyama Y,et al.Oxidation of polyhydric alcohols on a Pt electrode in alkaline solution[J].Fuel Cells,2002,2(1):35-39.
  • 5Hummers W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
  • 6Fasolino A,Los J H,Katsnelson M I.Intrinsic ripples in graphene[J].Nature Materials,2007,6:858-861.
  • 7Meyer J C,Geim A K,Katsnelson MI,et al.The structure of suspended graphene sheets[J].Nature,2007,446:60-63.
  • 8Zhang J,Mo Y,Vukmirovic M B,et al.Platinum monolayer electrocatalysts for O2 reduction:Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles[J].The Journal of Physical ChemistryB,2004,108(30):10955-10964.
  • 9Li H Q,Sun G Q,Li N,et al.Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction[J].The Journal of Physical Chemistry C,2007,111(15):5605-5617.
  • 10Wang H,Xu C W,Cheng F L.et al.Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells[J].Electrochemistry Communications,2008,10(10):1575-1578.

引证文献8

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部