期刊文献+

基于面部特征的疲劳驾驶检测 被引量:5

Detection of fatigue driving based on facial features
下载PDF
导出
摘要 文章采用一种基于眼睛闭合度及打呵欠来检测驾驶员疲劳的方法,在YCrCb颜色空间中利用高斯模型进行肤色检测得到人脸的区域,在人脸灰度二值化图中利用五官几何结构的先验知识粗略定位人眼,利用区域生长和形态学运算得到人眼轮廓并计算眼睛的闭合度;检测嘴唇时利用唇色最佳阈值大致确定嘴唇位置,在此基础上通过人脸灰度值特征精确定位嘴唇,然后通过嘴张开程度判断驾驶员是否打呵欠;最后基于2个特征对驾驶疲劳进行判决,实验证明这种方法对驾驶疲劳检测具有较好的效果。 A method to detect driving fatigue based on the features of eyes and yawning is proposed. First, the face area is detected and located by using the Gaussian model in YCrCb color space. Then the facial gray image is linearized, and in the binary image, human eye regions are robustly located un- der the geometric constraints. By using the region growing and the morphological operating, the eyes positioning is accurately performed. Accordingly, the closure of eyes is calculated. Then the candidate lip area is located according to the best threshold of color space and the facial gray value feature. The degree of mouth opening shows whether the driver yawns. Finally, the driving fatigue is decided based on two facial features. The detection result of driving fatigue is improved because of the combi- nation of the features of eye and yawning frequency.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期448-451,共4页 Journal of Hefei University of Technology:Natural Science
基金 合肥工业大学重大预研基金资助项目(2011HGZL0001)
关键词 疲劳驾驶 肤色 唇色 疲劳判决 灰度值特征 fatigue driving skin color lip color fatigue decision gray value feature
  • 相关文献

参考文献7

二级参考文献31

  • 1高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36. 被引量:67
  • 2吴林托,李芳,阙步军,沈羽中.基于红外LED的人眼快速定位与跟踪的研究[J].光学仪器,2006,28(1):85-88. 被引量:5
  • 3高永萍,秦华标.驾驶员疲劳检测系统[J].仪表技术与传感器,2007(1):60-62. 被引量:8
  • 4袁翔,黄博学,夏晶晶.疲劳驾驶检测方法研究现状[J].公路与汽运,2007(3):51-54. 被引量:11
  • 5TMS320C6000 Optimizing C/C++Compiler User's Guide.SP-RU187k,Texas Instruments Incorporated,2003.
  • 6B. ROMAN, et al. Fatigue Indicators of Drowsy Drivers Based on Analysis of Physiological Signals[C]. ISMDA 2001, LNCS 2199, 2001: 62-68.
  • 7AGREN E. Lateral position detection using a vehicle- mounted camera[D]. Master Thesis of Linkopings Universitet, 2003.
  • 8GU H S, JI Q, ZHU ZH W. Active facial tracking for fatigue detection[C]. Proceedings of Sixth IEEE Workshop on Applications of Computer Vision 2002, WACV 2002, Orlando, 2002: 137-142.
  • 9CHU J W. Driver's eye state detecting method design based on eye geometry feature[C]. 2004 IEEE Intelligent Vehicles Symposium, 2004: 357-362.
  • 10LI S Z, CHU R E LIAO S C. Illumination invariant face recognition using near-infrared images[J]. IEEE Trans. Pattern Aaalysis and Machine Intelligence, 2007, 29(4): 627-639.

共引文献29

同被引文献43

  • 1彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. 被引量:41
  • 2KLAUER S G, DINGUS T A, NEALE V L, et al. The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data. Washington D. C.: National Highway Traffic Safety Administration, 2006.
  • 3公安部交通管理局. 中华人民共和国道路交通事故统计资料汇编2001—2008[R]. 北京:公安部交通管理局,2009.
  • 4LI W, HE Q C, FAN X M, et al. Evaluation of driver fatigue on two channels of EEG data[J]. Neuroscience Letters, 2012, 506(2): 235-239.
  • 5PATEL M, LAL S K L, KAVANAGH D, et al. Applying neural network analysis on heart rate variability data to assess driver fatigue[J]. Expert Systems with Applications, 2011, 38(6): 7235-7242.
  • 6LIU C C, HOSKING S G, LENN M G. Predicting driver drowsiness using vehicle measures: recent insights and future challenges[J]. Journal of Safety Research, 2009, 40(4): 239-245.
  • 7FORSMAN P M, VILA B J, SHORT R A, et al. Efficient driver drowsiness detection at moderate levels of drowsiness[J]. Accident Analysis and Prevention, 2013, 50: 341-350.
  • 8INGRE M, KERSTEDT T, PETERS B, et al. Subjective sleepiness, simulated driving performance and blink duration: examining individual differences[J]. Journal of Sleep Research, 2006, 15(1): 47-53.
  • 9JO J, LEE S J, PARK K R, et al. Detecting driver drowsiness using feature-level fusion and user-specific classification[J]. Expert Systems with Applications, 2014, 41(4): 1139-1152.
  • 10ZHU Z, JI Q. Real time and non-intrusive driver fatigue monitoring[C]//The 7th International IEEE Conference on Intelligent Transportation Systems Proceedings. Washington D. C.: IEEE, 2004: 657-662.

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部