摘要
文章研究了带有Markov跳的随机中立系统的均方指数稳定性问题,考虑带有Markov跳的中立系统,并同时考虑了系统具有时滞及非线性干扰。该模型中所考虑的状态时滞和分布时滞依赖于Markov跳,所考虑的Markov跳是具有连续的时间和连续状态的Markov过程;基于Lyapunov-Krasovskii理论,利用积分不等式的方法,得到带有Markov跳的时滞中立系统均方指数稳定的充分条件;数值例子说明了该方法的有效性。
The problem of exponential stability in mean-square of a class of Markovian jump stochastic neutral system with distributed delays and nonlinear perturbation is studied. The Markovian jump is regarded as a Markovian process with continuous time and state and the state and distributed delays are related to Markovian jump. Based on a new Lyapunov-Krasovskii functional and stochastic analy- sis, the sufficient condition for exponential stability in mean-square of Markovian jump neutral system with time delays is derived by using some integral inequalities. A numerical example shows that the method is effective.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期477-482,共6页
Journal of Hefei University of Technology:Natural Science
基金
教育部科学技术研究重大资助项目(309017)
关键词
随机中立型系统
马尔可夫跳
非线性不确定干扰
分布时滞
指数稳定
stochastic neutral system
Markovian jump
nonlinear uncertain perturbation
distributed delay
exponential stability