期刊文献+

基于高阶差分方法半参数回归模型中参数的minimax估计 被引量:1

Minimax estimates of parameters in a semiparametric regression model based on higher order difference
下载PDF
导出
摘要 基于高阶差分方法给出半参数回归模型中参数β的minimax线性估计条件,并指出差分方法下得到的最小二乘估计^βdiff为β的minimax线性估计.另外对差分项存在多重共线性的情况,指出参数β的岭估计^βdiff(k)存在minimax估计优良性的条件. The paper introduces conditions of difference-based minimax estimates of the regression parameters β in a semiparametric model. The ordinary least squares estimator βdiff based on higher order differences of the observations, and the minimax linear estimator of β are considered at the same time. Furthermore, the difference-based ridge regression estimator βdiff (k) that used in the presence of multicollinearity in a semiparametric model, and the conditions of βdiff (k) as a minimax linear estimator are also considered.
作者 王晖 左国新
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期150-154,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10741002)
关键词 高阶差分 半参数回归模型 MINIMAX估计 higher order difference semiparametric regression model minimax estimate.
  • 相关文献

参考文献6

  • 1Yatchew A. An elementary estimator of the partial linear model[J]. Economics Letters, 1997, 57:135-14,3.
  • 2Wang L, Brown L D, Cai T. A difference based approach to semiparametrie partial linear model[R]. Technical Report, 2007.
  • 3Tabakan G, Akdeniz F. Difference-based ridge estimator of parameters in patial linear model[J]. Stat Papers, 2010, 51:357-368.
  • 4Hall P, Kay J W, Titterington D M. Asymptotically optimal difference-based estimation of variance in nonparametric re- gression[J]. Biometrika, 1990, 77(3) :521-528.
  • 5Heckman N E. Minimax estimates in a semiparametric model [J]. American Statistical Association, 1988, 83(404) : 1090- 1096.
  • 6Hoerl A E,Kennard R W. Ridge regression: biased estima- tion for nonorthogonal problems[J]. Technometrics, 1970, 12(1) :55-67.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部