期刊文献+

基于PSO_LSSVM和Elman神经网络的北京市气温预测效果比较 被引量:1

Comparison of Beijing Temperature Prediction Effect Based on PSO_LSSVM and Elman Neural Network Model
下载PDF
导出
摘要 利用北京市1960-2004年的月平均气温数据,建立最小二乘支持向量机(LSSVM)与Elman神经网络模型,分别运用粒子群算法(PSO)与试凑法对这2种模型进行优化,并对2005-2009年的月平均气温进行预测估计,比较2种模型的预测结果,以便找出更准确的气温预测模型。结果表明,2种模型总体上均能较好地拟合气温序列(R2均大于0.985),但是对于低温预测效果均相对欠佳;PSO_LSSVM预测误差(RMSE=1.380 6)明显小于Elman神经网络(RMSE=1.732 5),拟合精度更高,能更好地对短期气温变化进行模拟。因此,可用PSO_LSSVM模型进行气温预测,指导当地的农业生产与工业开发。 Based on the data analysis of monthly average temperature from 1960 to 2004 in Beijing,a least squares support vector machine (LSSVM) and an Elman neural network model were established,and optimized by particle swarm optimization(PSO), trial and error method respectively,and then applied to predict the data of monthly average temperature from 2005 to 2009. Finally a comparative analysis of those two models was made and a more reasonable model was selected. The results showed that two models were all relatively feasible for simulation of the temperature series as a whole (R^2 was higher than 0. 985). However,it did not work well when they were used in low temperature prediction. Moreover, compared with Elman neural network model (RMSE=-1. 732 5),PSO_LSSVM had less prediction errors(RMSE=1. 380 6),and the simulation result was better. Accordingly,PSO_LSSVM model could be applied to temperature prediction,which can serve as a guidance for local agriculture production and industrial development.
出处 《河南农业科学》 CSCD 北大核心 2013年第3期157-160,共4页 Journal of Henan Agricultural Sciences
基金 国家自然科学基金(10801135 10671063) 国家自然科学基金国际合作项目(10911140115) 中国农业大学科研启动基金(2006062)
关键词 PSO_LSSVM ELMAN神经网络 气温预测 PSO_LSSVM Elman neural network prediction of temperature
  • 相关文献

参考文献10

二级参考文献57

共引文献354

同被引文献14

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2Suykens J A K, Gestel T V, Brabanter J D, et al. Least squares support vector machines [ M ]. Singapore: World Scientific Publishing,2002:79-93.
  • 3Amari S,Wu S. Improving support vector machine classi- fiers by modifying kernel functions [ J ]. Neural Networks, 1999,12 ( 6 ) :783 -789.
  • 4Takens F. Detecting strange attractors in turbulence[ Jl.Lecture Notes in Mathematics, 1981,898 ( 1 ) : 366-381.
  • 5Rosenstein M T, Collins J J, Luca C J D. Reconstruction expansion as a geometry-based framework for choosing proper delay times [ J ]. Physica D Nonlinear Phenome- na, 1994,73 ( 94 ) : 82-98.
  • 6Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[ J]. Physica D Nonlinear Phenomena, 1997,110 ( 1 ) :43-50.
  • 7Keerthi S S, Lin C J. Asymptotic behaviors of support vector machine with Gaussian kernel[ J]. Neural Compu- tation, 2003,15 ( 7 ) : 1667-1689.
  • 8许丹宁,王洪斌,肖建华.基于ARIMA的猪瘟发病率预测模型的建立[J].中国预防兽医学报,2009,31(5):352-355. 被引量:3
  • 9闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009,35(14):218-220. 被引量:67
  • 10李滋睿,覃志豪.重大动物疫病区划研究[J].中国农业资源与区划,2010,31(5):18-22. 被引量:5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部