期刊文献+

基于背景抑制和特征点检测的目标检测算法 被引量:4

Aeral target detection and location algorithm based on single infrared image
下载PDF
导出
摘要 空域远距离红外目标探测系统中,飞行目标多表现为点状或面状的小目标,像素数少,且常伴有低空地面物体的干扰。根据空域和地面在梯度变化上的不同和目标本身的特性,提出了一种基于地面背景抑制和特征点检测的红外空中目标检测算法。分析了地面和空域在梯度变化上的特点,根据梯度变化大的像素的整体统计信息划分了空域和地面在图像中的分布,再通过特征点检测实现了候选红外飞行目标的检测。该算法适用于纯空域和低空背景,经过对实际采集的大量红外图像的仿真表明,本文提出的算法具有很强的实用性和鲁棒性。 In infrared remote target detection system,the aeral targets containing little piexls looks just like a spot.Objects on the ground have much influence on the detection of the targets.A infrared aeral target detection algorithm based on background suppression and feature points detection is presented.This method analyses the difference of gradient between ground and air and then partition them.Subsequently finding out the feature points which represent the location of the targets.This method is applicable for the spatial domain and low altitude target detection.Experiment results shows that the proposed algorithm is effective and convergent.
出处 《激光与红外》 CAS CSCD 北大核心 2013年第4期457-460,共4页 Laser & Infrared
关键词 红外目标检测 背景抑制 特征点检测 图像梯度 infrared target detection background suppression feature points detection gradient calculation
  • 相关文献

参考文献4

二级参考文献42

  • 1于海南,赵保军.在低信噪比及背景干扰下红外图像点目标和面目标的检测[J].计量学报,2004,25(3):232-234. 被引量:4
  • 2Rimmele Thomas R. Recent advances in solar adaptive optics [J]. Proc. of SPIE(S0277-786X), 2004, 5490: 34-46.
  • 3ZHOU Wei-chao, JIANG Wen-han, LI Mei, et al. Real-time area correlation tracker implementation based on absolute difference algorithm [J]. Opt. Eng(S0091-3286), 2003, 42(9): 2755-2760.
  • 4Matthews L, Ishikawa T, Baker S, et al. The template update problem [J]. IEEE Trans. on Pattern Anal. Maeh. Intell. (S0162-8828), 2004, 26(6): 810-815.
  • 5Chris Harris. A Combined Comer and Edge Detector [C]// Proceedings of The Fourth Alvey Vision Conference, Manchester, UK, Aug 31-Sept 2, 1988: 147-151.
  • 6Krystian Mikolajczyk, Cordelia Schmid. Scale & Affine Invariant Interest Point Detectors [J]. Int. J. Comput Vision (S0920-5691), 2004, 60(1): 63-86.
  • 7Krystian Mikolajczyk, Cordelia Schmid. A Performance Evaluation of Local Descriptors [J]. IEEE Trans. on Pattern Anal. Mach. Intell(S0162-8828), 2005, 27(10): 1615-1630.
  • 8Lowe David G. Distinctive Image Features from Scale-Invariant Keypoints [J]. Int J Comput Vision(S0920-5691), 2004, 60(2): 91-110.
  • 9[1]M. Kikuchi, K. Fukushima. Neural network model of the visual system: binding form and motion. Neural Networks, 1996, 9(8) :1417~1427.
  • 10[2]J.Y.A. Wang, E. H. Adelson. Representing moving images with layer. IEEE Trans Image processing,1994, 3(5) :625~638.

共引文献20

同被引文献306

  • 1杨丽萍,冯晓毅.一种基于背景预测的红外弱小目标检测方法[J].红外技术,2007,29(7):404-408. 被引量:14
  • 2AJMAL S M. Reahime visual tracking of aircrafts [ C ]. Proceedings of the 2008 Digital Image Computing: Techniques and Applications, Washington, DC, USA, 2008 : 351-356.
  • 3HU X, YU L, FENG J Y. Improved image target detec- tion based on component analysis [ J ]. International Journal of Digital Content Technology & its Applica- tions, 2012, 6(6).
  • 4ALI A, KAUSAR H, KHAN M I. Automatic visual tracking and firing system for anti aircraft machine gun [ C ]. 2009 6th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2009 : 253-257.
  • 5KONTITSIS M, VALAVANIS K. A cost effective tracking system for small unmanned aerial systems [ J ]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4) : 171-191.
  • 6ALI S F, JAAFAR J, MALIK A S. Proposed technique for aircraft recognition in intelligent video automatic tar- get recognition system (IVATRs) [ C ]. Computer Appli- cations and Industrial Electronics (ICCAIE), 2010 In- ternational Conference on. IEEE, 2010 : 174-179.
  • 7YOON S P, SONG T L, KIM T H. Automatic target recognition and tracking in forward-looking infrared im- age sequences with a complex background [ J ]. Interna- tional Journal of Control, Automation and Systems, 2013, 11(1): 21-32.
  • 8LI ZH H, WANG L, CUI J G. The prediction tracking method of weak aerial target based on GM ( 1, 1 ) model [ C ]. Proceedings of International Conference Conf. on Measuring Technology and Mechatronics Automation, Zhangjiajie, 2009: 408-411.
  • 9XU C, DUAN H. Artificial bee colony (ABC) opti- mized edge potential function (EPF) approach to target recognition for low-altitude aircraft [ J ]. Pattern Recog- nition Letters, 2010, 31(13) : 1759-1772.
  • 10ZHANG F, LIU S Q, WANG D B, et al. Aircraft rec- ognition in infrared image using wavelet moment invari- ants [J]. Image and Vision Computing, 2009, 27(4) : 313-318.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部