摘要
提出了一种基于近邻传播聚类的彩色图像分割方法。首先将彩色图像的颜色空间转换到CIE L*u*v*颜色空间,并对变换后的彩色图像进行采样;然后运行给定聚类数目的近邻传播聚类(APGNC),接着对其余未采样数据根据最大相似度规则,分别得到它们的类归属;最后利用形态学的区域合并方法去除独立小区域,得到修正后的图像分割结果。经仿真实验证明,该方法可以实现近邻传播算法在大规模彩色图像分割中的应用,具有较快地处理速度和较满意的分割结果,更符合人类的整体视觉感观。
A color image segmentation algorithm based on affinity propagation clustering is proposed. Firstly, the whole color image is converted to other color space; and then the sampling data of the image is clustered by affinity propagation algorithm with given number, then their class label of the rest data can be obtained according to the maximum similarity rules; finally, independent small regions can be removed by using the regional combined methods,and get revised image segmentation result. The simulation experiment shows that this method can achieve the application of affinity propagation algorithm in large-scale color image segmentation. And it has a faster processing speed and satisfactory segmentation results, is better in line with the human whole visual perception.
出处
《商洛学院学报》
2013年第2期22-26,共5页
Journal of Shangluo University
关键词
近邻传播聚类
数据采样
分割
区域合并
affinity propagation
data sampling
image segmentation
regional merger