期刊文献+

基于SIFT特征的SAR图像配准方法在玉树地震中的应用 被引量:2

SAR Image Registration Based on SIFT Algorithm and its Application to the 2010 Yushu Earthquake
下载PDF
导出
摘要 本文针对SAR图像特点,提出了基于改进SIFT(尺度不变特征变换)算法的SAR图像配准方案:①对待配准图像进行ISEF(无限对称指数滤波器)滤波处理,降低图像的斑点噪声;②采用SIFT算法提取特征点,略过差分金字塔第一层的特征点检测,提高时间效率;③在欧氏空间内剔除误匹配点,提高配准精度。实验表明,本文提出的SAR图像配准方案检测到的匹配点对的数量和稳健性都有提高,精度能够满足亚像元级SAR图像的应用需求,且用时比传统SIFT方法减少60%以上。最后对精配准的SAR图像进行震害变化检测,得到的震害分布与高分辨率光学图像上判读的建筑物毁坏情况基本一致。 An improved matching method based on Scale Invariant Features Transform (SIFT) algorithm is proposed in this paper. The Infinite Symmetric Exponential Filter (ISEF) algorithm is adopted to reduce speckle noise before computation of the scale space pyramid. SIFT algorithm is utilized to detect the feature points and skip the first scale-space octave to reduce processing time. And then false matches are deleted in the Euclidean space. Experiments show that the proposed method increases the number of the features and improves the robustness. The match accuracy could meet the requirement of subpixel matching and the processing time has been cut by 60%. Finally, earthquake change detection is implemented from ALOS PALSAR images, and the building damage information detected is consistent with the results from high spatial resolution aerial image.
出处 《地震》 CSCD 北大核心 2013年第2期37-45,共9页 Earthquake
基金 科技部国际科技合作项目(2009DFA21610)资助
关键词 ALOS PALSAR SIFT算法 ISEF 影像配准 玉树地震 ALOS PALSAR Image Registration the 2010 Yushu Earthquake
  • 相关文献

参考文献12

  • 1Smith S M, Brady J M. SUSAN-A New Approach to Low Level Image Processing[J].International Journal of Computer Vision, 1997, 23(1) : 45-78.
  • 2Harris C, Stephens M. A Combined Corner and Edge Detector[A]. Fourth Alvey Vision Conference [C]. Manchester, UK, 1998. 147-151.
  • 3Lowe D G. Object Recognition from Local Scale-invariant Features[A]. International Conference on Computer Vision[C]. Corfu, Greece, 1999. 1150-1157.
  • 4Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 5Mikolajczyk K, Schmid C. A Performance of Evaluation of Local Description[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 7刘秀芳,尤红建.基于SIFT的多时相星载SAR图像特征点自动匹配[J].测绘科学,2009,34(1):43-45. 被引量:7
  • 8Beis J, Lowe D G. Shape Indexing Using Approximate Nearest-neighbour Search in High-dimensional Spaces[A]. In Conference on Computer Vision and Pattern Recognition[C]. Puerto Rico, 1997. 1000-1006.
  • 9Jun Shen, Serge Castan. An Optimal Linear Operator for Step Edge Detection[J]. Graphical Models and Image Processing, 1992, 54(2) : 112-133.
  • 10窦爱霞,王晓青,丁香,袁小祥,王龙,董彦芳,金鼎坚.遥感震害快速定量评估方法及其在玉树地震中的应用[J].灾害学,2012,27(3):75-80. 被引量:21

二级参考文献58

共引文献205

同被引文献17

  • 1汪雄良,王正明,赵侠,朱炬波.基于l_k范数正则化方法的SAR图像超分辨[J].宇航学报,2005,26(B10):77-82. 被引量:11
  • 2MIKOLAJCZYK K, SCHMID C. A Performance Evaluation of Local Descriptors[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2003, 2:257-263.
  • 3YAN K, SUKTHANKAR R. PCA-SIFF: a more distinctive representation for local image descriptors [ C]//Proceedings of the Computer Vision and Pattern Recognition, IEEE Computer Society Conference on. IEEE, 2004:506-513.
  • 4DUAN C, MENG X X, TU C H, et al. How to make local image features more efficient and distinctive [J].IET Comoutcr. Vision. 2008. 2(3 ) : 178-189.
  • 5ETHAN R, VINCENT R, KURT K, et al. ORB : an effi- cient alternative to SIFT or SURF [ C ]//IEEE Interna- tional Conference on Computer Vision, 2011:1-8.
  • 6LOWED G. Object recognition from local scale-invariant features[ C ]//In Proceedings. of the International Con- ference on Computer Vision, 1999 : 1150-1157.
  • 7LOWED G. Distinctive image features from scale-invari- ant key-points [J]. Internation Journal of Computer Vi- sion, 2004, 60:91-110.
  • 8王金泉,李钦富.基于单应性矩阵的SAR图像配准技术研究[J].中国电子科学研究院学报,2008,3(6):657-660. 被引量:14
  • 9刘向增,田铮,史振广,陈占寿.基于FKICA-SIFT特征的合成孔径图像多尺度配准[J].光学精密工程,2011,19(9):2186-2196. 被引量:12
  • 10王山虎,尤红建,付琨.基于大尺度双边SIFT的SAR图像同名点自动提取方法[J].电子与信息学报,2012,34(2):287-293. 被引量:21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部