期刊文献+

小波在基于CT图像的肝脏疾病良恶性分类中的研究 被引量:1

The Research of Wavelet in Classification of Benign and Malignant Liver Tumor in CT Images
下载PDF
导出
摘要 肝癌是一种常见的恶性肿瘤,近年来发病率呈缓慢上升的趋势,病死率也随之上升。文章利用小波在特征提取和模式识别方面的独特优势,提取了基于小波和灰度共生矩阵的纹理特征,结合遗传算法进行特征选择和优化,用KNN分类器设计出高精确度的肝脏疾病良恶性分类器。采用肝脏CT平扫图像,将肝癌与其他的良性病变进行分类,探讨了小波的不同性质及特征提取方式对分类结果的影响,对小波在肝脏CT图像良恶性分类中的研究有指导意义。 Hepatocellular carcinoma(HCC) is a common malignant rumor, in recent years, and the rate of liver diseases was slowly rising, and the mortality rate also rise. In this paper, by using the unique advantage of wavelet in feature extraction and pattern recognition, the texture features based on wavelet and spatial gray level co-occurance matrix are extracted. Combining the genetic algorithm to select and optimize the features, KNN classifier is used to define an optimal computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into HCC and benign tumor. This paper explores the effect of the different characters of wavelet and feature extraction methods to the classification results, this paper gives guidance to the research of wavelet in classification of benign and malignant liver tumor in CT images.
作者 姜慧 覃事刚
出处 《电脑与信息技术》 2013年第2期8-12,共5页 Computer and Information Technology
基金 湖南省教育厅科研项目(项目编号:10C0094) 湖南省科技计划项目(项目编号:10C00942010CK3049)
关键词 平扫CT图像 肝脏 小波 纹理特征 分类 non-enhanced CT images liver wavelet texture feature classification
  • 相关文献

参考文献13

  • 1Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI. An AutomaticDiagnostic system for CT Liver Image Classification [J] . IEEETransactions Biomedical Engineering, 1998, 45(6): 783-794.
  • 2Mala K, Sadasivam V. Automatic Segmentation and Classification ofDiffused Liver Diseases using Wavelet Based Texture Analysis andNeural Network [C] . IEEE Indicon 2005 Conference,2005.216-219.
  • 3Mala K, Sadasivam V, Alagappan S. Neural Network based TextureAnalysis of Liver Tumor from Computed Tomography Images[C].IntemationlJournal of Biomedical Sciences,2007,2(1) : 1306-1216.
  • 4Daubechies I. Orthonormal bases of compactly supported wavelets [J].Communications on Pure and Applied Mathematics, 1988,41: 909-996.
  • 5Daubechies I. Orthonormal bases of compactly supported wavelets II.variations on a lheme[J]. SIAM Journal of Mathematical Analysis, 1993,24: 499-519.
  • 6Geronimo JS, Hardin DP, Massopust PR. Fractal Functions and WaveletExpansions Based on Several Scaling Functions[J]. Journal of ApproximationTheory, 1994, 78: 373-401.
  • 7Shen L , Tan HH,Tham JY. Symmetric - Antisymmetric OrthonormalMultiwavelets and Related Scalar Wavelets[J]. Applied and ComputationalHarmonic Analysis, 2000, 8:258-279.
  • 8Mougiakakou SG, Valavanis LK, Nikita A, Nikita KS. Differential diagnosisof CT focal liver lesions using texture features,feature selection andensemble driven classifiers [J]. Artifical Intelligence in Medicine,2007,41(1):25-37.
  • 9Siedlecki W, Sklansky J. A note on genetic algorithms for large scalefeature selection[J]. Pattern Recog Lett 1989, 10:335-347.
  • 10Handels H, Ross T, Kreusch J, Wolff HH, Poppl SJ. Feature selection foroptimized skin tumor recognition using genetic algorithms [J]. ArtificalIntelligence in Medicine, 1999, 16:283-297.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部