摘要
基于Web Data和Linked Data开展语义关系发现的探索和研究,选取生物医学为分析领域,利用RelFinder可视化工具开展了语义关系发现的应用和实现。文章首先对关系发现研究面临的困难和基于Web Data探索的新思路进行分析;然后对RelFinder的工作机制进行分析,从设计原则,ORVI过程和局限性三个方面做了系统阐述;并利用RelFinder和Virtuoso实现了基于生物医学Linked Data的语义关系发现系统。最后,讨论了系统存在的不足及未来的研究方向。
Based on Web Data and Linked Data, this article explored semantic relation discovery, choosing biomedical as analysis domain and using the visualization tool RelFinder to facilitate the research and the application of the research result. First, we stated the difficulties existing in current relation discovery effort and brought up new thinking based on Web Data exploration. Then, we analyzed the mecha- nism of RelFinder from three aspects involving design principle, ORVI process and its limitation. In addition, we used RelFinder and Vir- tuoso to complete our biomedical semantic relation discovery system. At last, we discussed the insufficient aspects of this system and point- ed out future research direction.
出处
《情报杂志》
CSSCI
北大核心
2013年第4期142-148,共7页
Journal of Intelligence
基金
国家社会科学基金项目"关联数据中潜在知识关联的发现方法研究"(编号:11CTQ016)的研究成果之一