期刊文献+

基于可行方向变异的NSGA_Ⅱ改进算法 被引量:2

An Improved NSGA_Ⅱ Algorithm Based on Feasible Direction Mutation
下载PDF
导出
摘要 在已有多目标遗传算法(NSGA_Ⅱ)研究和分析的基础上,提出一种改进算法INSGA_Ⅱ。在引入算术交叉算子的同时,主要对变异算子进行了改进,引入了Zoutendijk可行方向变异算子。实验表明,改进的算法INSGA_Ⅱ具有更快的收敛速度、更好的收敛性和种群多样性。 Based on the study and analysis of NSGA_II algorithm, An improved version of INSGA_II is proposed. The improved algorithm improves the mutation operator in adopting arithmetic crossover operator at the same time, and introduces the Zoutendijk feasible direction mutation operator. The testing results show that Improved INSGA_II algorithm not only has the faster convergence speed, but also has better convergence and the diversity of population.
出处 《电脑编程技巧与维护》 2013年第8期17-18,39,共3页 Computer Programming Skills & Maintenance
关键词 NSGA_II算法 交叉算子 可行方向变异算子 NSGA_II algorithm crossover operator feasible direction mutation operator
  • 相关文献

参考文献11

  • 1Schaffer J.D. Multiple Objective Optimization with Vector Evalu- ated Genetic Algorithms [ D] . Unpublished Ph.D. thesis, Vanderbih University,Nashville, Tennessee.1984.
  • 2Fonseca C.M, Fleming P.J.Genetic Algorithms for Multi-ob- jective Optimization: Formulation, Discussion and General- ization [C] //In Stephanie Forrest, editor, Proceedings of the Fifth Intemational conference on Genetic Algorithms, san Mateo, California.University of Illinois at Urbana-Cham- paign, Morgan Kauffman Publishers, 1993: 416-423.
  • 3Jeffrey Horn, Nicholas Nafpliotis. Multi-objective Optimiza- tion using the Niched Pareto Genetic Algorithm [R] .Techni- cal Report IlliGAI Report 93005, University of Illinois at Ur- bana-Champaign,Urbana,111inois,USA,1993.
  • 4Srinivas N, Deb K.Multi-objective Optimization Using Non- dominated sorting in Genetic Algorithms [J] .Evolutionary Computation, 1994, 2 (3): 221-248.
  • 5Deb K, Agrawal S., Pratap A, etal.A Fast Elitist Non-Dom- inated sorting Genetic Algorithm for Multi-objective Opti- mization : NSGA_ II [R] .Technical Report No.2000001.Kan- pur: Indian Institute of Technology Kanpur, India, 2000.
  • 6Deb K, Goyal M.A combined genetic adaptive search (Ge- neAS) for engineering design [J] .Computer Science and In- formatics, 1996, 26 (4): 30-45.
  • 7J.Knowles, D.W.Corne. Local search multi-objective opti- mization and the pareto achived Evolutionary strategy [C] //Proceedings of the third Australia-Japan joint workshop on intelligent and evolutionary systems, 1999 : 209~216.
  • 8王全风.结构优化基本方法及其在高层建筑中应用.厦门:厦门大学出版社,1995.
  • 9Deb K, Jain S. Running performance metrics for evolutionary multi-objective optimization [ R] Kan GAL Report No. 2002004, 2002.
  • 10Khare V, Yao X, Deb K. Performance Scaling of Multi- ob- jective Evolutionary Algorithms [R] . Kan GAL Report No. 200209, 2002.

同被引文献12

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部