期刊文献+

基于蒙特卡罗法的太阳能聚光接收器布局及形状优化设计 被引量:11

Arrangement and Shape Optimization of Solar Concentrating Receivers Using Monte Carlo Method
原文传递
导出
摘要 太阳能聚光系统接收面能流密度的均匀性对系统的性能及转换效率有着重要影响。为了提高聚光系统接收面上能流密度分布的均匀性,提出了一种对聚光系统接收器的布局及几何形状进行设计和优化的方法。该方法通过蒙特卡罗光线追迹法确定聚光系统接收面上的辐射能流分布,同时考虑了太阳形状。建立了以接收面口径大小为约束,以接收面辐射能流密度分布均匀度最高为目标的优化模型,并利用Kiefer-Wolfowitz随机逼近算法进行求解,从而实现了系统的优化。对二维抛物柱面聚光系统实例进行设计优化,在接收面上获得了光强的最佳均匀分布,同时能保持78.25%的高能量接收率,证明了该方法的有效性。该优化方法相比传统的试凑法计算效率高,并且得到的设计结果更接近最优解。 Uniform radiation flux distribution in the received surface is crucial for the performance and conversion efficiency of a solar concentrating system. In order to improve the uniformity of radiation flux distribution in the receiving surface, the arrangement and shape optimization of solar concentrating receivers is proposed. Considering the sun shape, the radiation flux distribution is determined by Monte Carlo ray-tracing method, and an optimization model is established, which takes the receiver aperture size as the constraint condition and aims at the highest uniformity of radiation flux distribution combing Kiefer-Wolfowitz algorithm. We take a linear parabolic-trough concentrating system for example, resulting in the most uniform intensity distribution while achieving a high energy reception of 78. 25%, which testifies the validity of this optimization procedure. The optimization procedure computes more efficiently than the traditional trial-and-error methodology, and the obtained solutions are also near optimal.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第3期103-108,共6页 Acta Optica Sinica
基金 国家863计划(2007AA12Z113)资助课题
关键词 光学器件 太阳能 几何布局优化 Kiefer-Wolfowitz算法 蒙特卡罗法 辐射能流密度 均匀性 optical devices solar energy arrangement and shape optimization Kiefer-Wolfowitz algorithm MonteCarlo method radiation flux uniformity
  • 相关文献

参考文献15

  • 1Winston Roland, Juan C. Mifiano, Pablo Benitez. Nonimaging Optics [ M ]. Burlington: Elsevier Academic Press, 2004. 319-324.
  • 2W. J. Cassarly. Nonimaging Optics: Concentration and Illumination. In: Handbook of Optics[M]. New York: McGraw Hill, 2010. 71-109.
  • 3王文博,李明,季旭,魏生贤,王六玲,杨玉文,范介清,龙星.菲涅耳聚光系统下砷化镓电池输出特性研究[J].光学学报,2012,32(7):198-204. 被引量:14
  • 4高越,张国玉,郑茹,高迪,苏拾.光学积分器对太阳模拟器辐照均匀性的影响[J].光学学报,2012,32(6):185-190. 被引量:20
  • 5H. Ries, A. Rabl. Edge ray principle of nonimaging optics [J]. J. Opt. Soc. Am. A, 1994, 11(10): 2627-2632.
  • 6M. Schubnell, J. Keller, A. Imhof. Flux density distribution in the focal region of a solar concentrator system[J]. J. Solar Energy Engineering, 1991, 113(2) : 112-116.
  • 7R. Siegel, J. Howell. Thermal Radiation Heat Transfer (4th ed. )[M]. New York-Taylor I- Francis, 2002. 390-406.
  • 8王云峰,季杰,何伟,陈海飞.抛物碟式太阳能聚光器的聚光特性分析与设计[J].光学学报,2012,32(1):198-205. 被引量:35
  • 9Zhigang Li, Dawei Tang, Jinglong Duet al.. Study on the radiation flux and temperature distributions of the concentrator receiver system in a solar dish/Stirling power facility[J]. Applied Thermal Engineering, 2011, 31(10) : 1780-1789.
  • 10Kathi Kreske. Optical design of a solar flux homogenizer for concentrator photovoltaics[J]. Appl. Opt. , 2002, 41 (10) :2053-2058.

二级参考文献32

  • 1向艳红,张容,黄本诚.KFTA太阳模拟器辐照均匀性仿真[J].航天器环境工程,2006,23(5):288-292. 被引量:23
  • 2杜胜华,夏新林,唐尧.太阳光不平行度对太阳能聚集性能影响的数值研究[J].太阳能学报,2006,27(4):388-393. 被引量:28
  • 3O. A. Jaramillo, C. A. Perez-Rebago, C. A. Arancibia Bulnes et al.. A flat plate calorimeter for concentrated solar flux evaluation[J]. Renewable Energy, 2008, 33(10): 2322-2328.
  • 4Peter D. Jones, Wang Lili. Concentration distributions in cyiindrical receiver/paraboloidal dish concentrator systems[J]. Solar Energy, 1995, 54(2) : 115-123.
  • 5Chen Chifeng, Lin Chihhao, Jan Huangtzung. A solar concentrator with two reflection mirrors designed by using a ray tracing method[J]. Optik, 2010, 121(11): 1042-1051.
  • 6Shuai Yong, Xia Xinlin, Tan Heping. Radiation performance of dish solar concentrator/cavity receiver systems [J ]. Solar Energy, 2008, 82(1) : 13-21.
  • 7A. Kribus, D. Kaftori, G. Mittelman et al.. A miniature concentrating photovoltaic and thermal system [J]. Energy Conversion and Management, 2006, 47(20) : 3582-3590.
  • 8G. Johnston, K. Lovegrove, A. Luzzi. Optical performance of spherical reflecting elements for use with paraboloidal dish concentrators[J]. Solar Energy, 2003, 74(2) :133- 140.
  • 9K. Lovegrove, G. Burgess, J. Pye. A new 500 m2 paraboloidal dish solar concentrator [J ]. Solar Energy, 2011, 85 ( 4 ) : 620-626.
  • 10John A. Duffle, William A. Backman. Solar Engineering of Thermal Processes [M]. New York: John Wiley &Sons, Inc, 1980. 307--320.

共引文献64

同被引文献77

引证文献11

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部