期刊文献+

基于P3HT:PCBM体异质结的正置和倒置太阳能电池性能的数值研究 被引量:7

Optical Simulation Based on P3HT:PCBM Bulk-Heterojunction Solar Cells:a Comparison of Normal and Inverted Structures of Device
原文传递
导出
摘要 采用基于传输矩阵法的光学模型模拟活性层为P3HT:PCBM的太阳能电池,研究了器件结构以及活性层厚度对其光学性能的影响,并分析了相关原因。研究结果表明短路电流密度随活性层厚度增加而增大,倒置结构器件性能优于正置结构器件。由于光的干涉作用,结构不同的器件中光电场强度呈现不同的分布,对于器件性能有很大的影响。通过计算得出了两种结构中短路电流密度随活性层厚度的变化规律,优化了器件的结构。计算结果表明当器件为倒置结构,且活性层厚度为225nm时,器件性能最优,此时短路电流密度为15.5mA/cm2,效率为5.77%。 Optical model based on transfer matrix method is employed to investigate the effects of active layer thickness and the configuration on the performance of organic solar cells based on P3HT." PCBM. Simulation result reveals that short circuit current density increases with active layer thickness and performance of inverted structure device is superior to normal one. Interference effect has a great influence on optical electric-field strength distribution and the device performance. The short-circuit current density and optical electronic field distribution in two structures of the device are calculated to decide the optimal device configuration. It is found that the inverted organic solar cell device with 225 nm thick P3HT PCBM shows the highest performance allowing achievement of short-circuit current density for 15.5 mA/cm2 , efficiency for 5.77 %.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第3期262-266,共5页 Acta Optica Sinica
基金 广东省自然科学基金(S2011010002575) 广东省教育厅育苗项目(LYM10023)资助课题
关键词 光学器件 光学模拟 传输矩阵法 体异质结太阳能电池 P3HT PCBM 光干涉作用 optical devices optical simulation transfer matrix method bulk-heterojunction solar cell P3HT:PCBM interference effect
  • 相关文献

参考文献19

  • 1李祥,文尚胜,姚日晖,陈东成,桂宇畅.基于传输矩阵法的聚合物太阳能电池光学性能分析[J].光学学报,2012,32(6):281-288. 被引量:6
  • 2杨少鹏,赵艳新,韩凌洁,杨启满,韩理,傅广生.免光学间隔层的高效聚合物太阳能电池[J].光学学报,2012,32(5):292-296. 被引量:7
  • 3肖文波,何兴道,王庆,李淑静,段军红,熊文林,薛金戈,段海冰.透镜焦点位置调制太阳电池开路电压的研究[J].光学学报,2009,29(12):3519-3522. 被引量:1
  • 4C. Tao, S. P. Ruan, X. D. Zhang et al.. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer [J]. Appl. Phys. Lett., 2008, 93(19): 193307.
  • 5H. Y. Chen, J. Hou, S. Zhanget al.. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nat. Photon. , 2009, 3(11): 649-653.
  • 6J. H. Seo, A. Gutacker, Y. M. Sun et al.. Improved high- efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer [J]. J. Am. Chem. Soc., 2011, 133(22) = 8416-8419.
  • 7Y. Y. Liang, Z. Xu, J. B. Xiaetal.. For thebrightfuture-bulk heterojunction polymer solar cells with power conversion dffieiency of 7. 4- [J]. Adv. Mater., 2010, 22 (20)= E135-E139.
  • 8Y. S. Tsai, J. S. Lin, W. P. Chu et al.. Adjusting optical resonance thickness to increase the conversion efficiency o{ polymer solar cells [J]. Curr. Appl. Phys., 2010, 10(3): S502-S505.
  • 9M. Jorgensen, K. Norrman, F. C. Krebs. Stability/degradation of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(7) : 686-714.
  • 10Y. M. Sun, J. H. Seo, C. J. Takacs et al.. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel- derived ZnO film as an electron transport layer [J]. Adv. Mater., 2011, 23(14): 1679-1683.

二级参考文献37

  • 1黄国华,施玉川,杨宏,苑进社.常规太阳电池聚光特性实验[J].太阳能学报,2006,27(1):19-22. 被引量:30
  • 2A. Shah, P. Torres, R. Tscharner et al.. Photovoltaic technology: the case for thin-film solar cells [J]. Science, 1999, 258:692-698.
  • 3Adolf Goetzherger, Joachim Luther, Gerhard Willeke. Solar cells: past, present, future [J]. Sol. Energ. Mater. Sol. Cells, 2002, 74: 1-11.
  • 4M. Hein, F. Dimroth, G. Siefer et al.. Characterisation of a 300 × photovoltaie concentrator system with one-axis tracking [J]. Sol. Energ. Mater.Sol. Cells, 2003, 75:277-283.
  • 5Masafumi Yamaguchi, Antonio Luque. High efficiency and high concentration in photovoltaics[J]. IEEE Transactions on Electron Derives, 1999, 46(10): 2139-2143.
  • 6Zhengxin Liu, Atsushi Masuda, Takehiko Nagai et al.. A concentrator module of spherical Si solar cell [J]. Sol. Energ. Mater. Sol. Cells, 2007, 91: 1805-1810.
  • 7S. Khelifi, L. Ayat, A. Belghachi. Effects of temperature and series resistance on GaAs concentrator solar cell [J]. Eur. Phys. J. Appl. Phys. , 2008, 41:115-119.
  • 8Luque A. Solar Cells and Optics for Photovoltaic Concentration [M]. England: IOP Publilshing Ltd, 1989. 103-111.
  • 9C. W. Tang. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett. , 1986, 48(2): 183-185.
  • 10E. Bundgaard, F. C. Krebs. Low band gap polymers for organic photovoltaics [J]. Sol. Energy Mater. Sol. Cells, 2007, 91(11) : 954-985.

共引文献10

同被引文献142

  • 1吴瑜之,彭银生.晶体硅太阳电池选择性扩散的研究[J].太阳能学报,2005,26(5):635-638. 被引量:9
  • 2屈盛,陈庭金,刘祖明,廖华.太阳电池选择性发射极结构的研究[J].云南师范大学学报(自然科学版),2005,25(3):21-24. 被引量:9
  • 3施敏.半导体器件物理与工艺[M].苏州:苏州大学出版社.2004:165-213.
  • 4M. Kaltenbrunner, M. S. White, E. D. Glowacki et al: Ultrathin and lightweight organic solar cells with high flexibility [J]. Nature Commun. , 2012, 3:770.
  • 5M. Manceau, D. Angmo, M. Jorgensen et al: ITO-free flexible polymer solar cells: From small model devices to roll-to- roll processed large modules[J]. Org. Electron. , 2011, 12(4): 566-574.
  • 6M. G. Kang, H. J. Park, S. H. Ahnet al: Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells [J]. Sol. Energ. Mat. & Sol. Cell, 2010, 94(6): 1179-1184.
  • 7C. C. Chen, L. T. Dou, R. Zhu et al: Visibly transparent polymer solar cells produced by solution processing [J]. ACS Nano, 2012, 6(8): 7185-7190.
  • 8G. Li, R. Zhu, Y. Yang. Polymer solar ceils [J]. Nature Photon. , 2012, 6(3): 153-161.
  • 9D. J. Lipomi, B. C. K. Tee, M. Vosgueritchianet al: Stretchable organic solar cells [J]. Adv. Mater. , 2011, 23(15) : 1771-1775.
  • 10H. J. Park, T. Xu, J. Y. Lee et al: Photonic color filters integrated with organic solar cells for energy harvesting [J]. ACS Nano, 2011, 5(9) : 7055-7060.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部