期刊文献+

Magneto optical trap for neutral mercury atoms

Magneto optical trap for neutral mercury atoms
下载PDF
导出
摘要 Due to its low sensitivity to blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto-optical trap (MOT). Because of the high vapor pressure at room temperature, the mercury source and the cold pump were cooled down to 40℃ and 70 ℃, respectively, to keep the science chamber in an ultra-high vacuum of 6×10^-9 Pa. Limited by the power of the UV cooling laser, the one beam folded MOT configuration was adopted, and 1.5×10^5 Hg-202 atoms were observed by fluorescence detection. Due to its low sensitivity to blackbody radiation, neutral mercury is a good candidate for the most accurate optical lattice clock. Here we report the observation of cold mercury atoms in a magneto-optical trap (MOT). Because of the high vapor pressure at room temperature, the mercury source and the cold pump were cooled down to 40℃ and 70 ℃, respectively, to keep the science chamber in an ultra-high vacuum of 6×10^-9 Pa. Limited by the power of the UV cooling laser, the one beam folded MOT configuration was adopted, and 1.5×10^5 Hg-202 atoms were observed by fluorescence detection.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期32-35,共4页 中国物理B(英文版)
基金 Project supported by the Research Project of Shanghai Science and Technology Commission, China (Grant No. 09DJ1400700) the National Natural Science Foundation of China (Grant Nos. 10974211 and 11104292) the National Basic Research Program of China (Grant No. 2011CB921504)
关键词 laser cooling and trapping neutral mercury atom laser spectroscopy laser cooling and trapping, neutral mercury atom, laser spectroscopy
  • 相关文献

参考文献23

  • 1Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802.
  • 2Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808.
  • 3Lemke N D, Ludlow A D, Barber Z W, Fortier T M, Diddams S A, Jiang Y, Jefferts S R, Heavner T P, Parker T E and Oates C W 2009 Phys. Rev. Lett. 103 063001.
  • 4Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805.
  • 5Le Targat R, Baillard X, Fouche M, Brusch A, Tcherbakoff O, Rovera G D and Lemonde P 2006 Phys. Rev. Lett. 97 130801.
  • 6Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288.
  • 7Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005.
  • 8Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321.
  • 9Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502.
  • 10Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal'chikov V G, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部