期刊文献+

非单调信赖域方法求解无约束非光滑优化问题 被引量:5

Non-monotone trust region methods for solving unconstrained nonsmooth optimization problems
下载PDF
导出
摘要 提出了非单调信赖域算法求解无约束非光滑优化问题,并和经典的信赖域方法作比较分析。同时,设定了一些条件,在这些假设条件下证明了该算法是整体收敛的。数值实验结果表明,非单调策略对无约束非光滑优化问题的求解是行之有效的,拓展了非单调信赖域算法的应用领域。 It proposes a solution for non-smooth unconstrained optimization problems of non-monotone trust region methods, and compares the approach with the classical trust region methods. At the same time, the algorithm sets some conditions, under the conditions of these assumptions, the algorithm is provea global convergence. Numerical results show that non-monotonic strategy not only in solving non-smooth unconstrained optimization problems is effective, but also expands the non-monotonic trust region algorithm applications.
出处 《计算机工程与应用》 CSCD 2013年第8期48-50,共3页 Computer Engineering and Applications
关键词 非单调策略 信赖域算法 非光滑优化 全局收敛 无约束优化 non-monotone strategies trust region algorithms non-smooth optimization global convergence unconstrained optimization
  • 相关文献

参考文献8

二级参考文献33

  • 1欧宜贵,侯定丕.一类约束非光滑优化的非单调信赖域算法(英文)[J].应用数学,2005,18(1):60-65. 被引量:4
  • 2袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 3Fletcher R. Practical methods of optimization, constrained optimization [M]. Chichester: John Wiley Sons. 1981.
  • 4Yuan Y, Sun W. Optimization.. Theory and approach[M]. Beijing: Academic Press of China. 1997.
  • 5Ou Y. Trust region algorithm for a class of composite nondifferemiable programming[J]. Mathematics Application, 2000,13(2):98-100.
  • 6Sun W,Sampaio R J B, Yuan J. Quasi-Newton trust region algorithm for nonsmooth least squares problems[J]. Applied Mathematics and Computation, 1999.105:183 - 194.
  • 7Deng N Y,Xiao Y,Zhou F J. A nonmonotonic trust region algorithm[J]. JOTA,1993,76:259-285.
  • 8Chen Z W, Han J Y.Xu D C. A nonmonotone trust region method for nonlinear programming with simple constraints[J]. Applied Mathematics and Optimization, 2001.43 : 63 - 85.
  • 9Grippo L, Lampariello F, Lucidi S. A class of nonmonotone stabilization methods in unconstrained optimization[J]. Numerische Mathematik, 1991,59: 77-805.
  • 10Zhou J L,Tits. Nonmonotone linear search for minimax problems[J]. JOTA, 1993.76: 455-476.

共引文献81

同被引文献19

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部