期刊文献+

位平面和SIFT相结合的图像匹配方法 被引量:2

Image matching algorithm based on combination of bit planes and SIFT
下载PDF
导出
摘要 针对传统的相关匹配算法计算量大,对图像旋转敏感等问题,提出了一种位平面和尺度不变特征变换(SIFT)相结合的图像匹配算法。将待拼接的两幅图像A、B各自分解为8个位平面,对两幅图像都选择前4个具有视觉信息的位平面A1A2A3A4和B1B2B3B4;对A1A2、A2A3、A3A4图像进行异或运算,得到3幅图像。由于异或后的图像A1A2具有足够的细节部分,轮廓却不清晰,图像A3A4轮廓清晰,但是丢失了太多细节,而图像A2A3具有清晰的轮廓,又具有足够的细节信息,所以采用图像A2A3,然后与原图像A进行异或得到A′,同时采用同样的方法得到图像B′,再次采用SIFT算法进行点对匹配,利用欧氏距离进行图像匹配,最后利用RANSAC进行图像容错处理,得到一幅匹配图像。实验结果表明,该算法有效地提高了匹配速度,对图像明暗变化、尺度旋转等具有较强的健壮性。 Traditional-correlation-based matching methods require heavy computation time and they are sensitive to image rotation. This paper presents an image matching algorithm by combining bit planes and SIFT. It divides the two spliced images A and B into eight bit planes. The top four bit planes with visual infomaation A1A2A3A4 and B1B2B3B4 are selected from the two images. Then, using the images A1A2, A2A3 and A3A4 to XOR, it gets three images. Since after XOR, the image A1A2 gets many details, but the contour is not clear:while the image A3A4 has clear contour, but losts too many details; the image A2A3 has clear contour, and also has enough detail information. So the paper selects the image A2A3, then uses image A2A3 and the original A to XOR, and gets the image A', at the same time, uses the same method to get the image B', and SIFT algorithm to match again. Euclidean distance is used for inaage matching. Finally the RANSAC is used to process fault-tolerant, and gets a matching image. The experimental results show that the algorithm can effectively improve the matching speed, the image brightness changes, rotation and scale, with strong robustness.
出处 《计算机工程与应用》 CSCD 2013年第8期191-194,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60971127) 陕西省教育厅科学研究计划项目(No.09JK617) 西安理工大学高层次人员科研启动资金(No.108-210905)
关键词 位平面 尺度不变特征变换(SIFT) 图像匹配 异或运算 bit planes Scale Invariant Feature Transform( SIFT) image matching XOR
  • 相关文献

参考文献11

  • 1Hong Zhenlua,Wu Feiying.An imfroved SSDA afiEIiel in tar-get tracking[C]//Proceedings of the Confer-ence on Pattern Recognition, 1988:767-769.
  • 2Castro E D, Morandi C.Registration of translated and rotatedimages using finite fourier transforms[J] .IEEE Transactionson Pattern Analysis and Machine Intelligence, 1987, 9(5):700-703.
  • 3Anuta P E.Spatial regisfration of multispectral and multitem-poral digital imagery using fast Fourier transform teckiiques[J].IEEE Trans on Geo Elec,1970(8) :353-368.
  • 4Lowe 0 G.Distinctive image features scale invariant features[J].International Journal of Computer Vision,2004,60(2) :91-110.
  • 5Harris C, Stephens M.A combined comer and edge detectoi(C]//Proc of Alvey Conf Vision.England: Manchester UniversityPress, 1988: 189-192.
  • 6Moravec H P.Towanfe automatic visual cstacle avoidance[C]//Proceedings of the 5th International Joint Conference onArtifickl IntelligencevSan Francisco, CA, USA: Morgan KaufinanPublishers Inc, 1997.
  • 7Li H,Manjunath B S,Mitra S K.A contour-based approchto multisensor image registration[J].IEEE Transactions onImage Processing,1995,4( 3) : 320-334.
  • 8俞辉,侯在克,何旭莉,吴炎.一种基于轮廓特征的图像拼接算法设计与实现[J].石油大学学报(自然科学版),2003,27(2):114-118. 被引量:13
  • 9Mikolajczyk K, Tuytelaars T, Schmid C.A comparison ofaffine region detectors[J] .International Journal of ComputerVision,2005,65( 11 ):43-72.
  • 10Mikolajczyk K, Schmid C.A performance evaluation of localdescriptors[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(10) : 1615-1630.

二级参考文献7

共引文献12

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部