期刊文献+

一种基于混合PSO的投影寻踪动态聚类模型 被引量:4

New projection pursuit dynamic clustering model based on mixed PSO
下载PDF
导出
摘要 针对粒子群算法容易陷入局部最优解,将遗传算法的交叉和变异引入到粒子群算法中。根据不同的收敛情况及交叉和变异的特点使用两种算子,提出一种既能预防陷入局部最优解又能跳出局部最优解的混合粒子群算法,将该算法应用到投影寻踪动态聚类模型中来优化投影方向,得到近似最好的投影寻踪动态聚类模型。实验证明,相对于原始粒子群算法,该方法可以有效地避免陷入局部最优解,而且投影效果也更好。 Because particle swarm algorithm easily gets into local optimal solution, crossover and mutation of genetic algorithm will be introduced into particle swarm algorithm. According to different situation and the characters of crossover and mutation to use these two operators, this paper gives an improved particle swarm algorithm which can not only guard against into local optimal solution, but can jump out of local optimal solution. By using this improved algorithm into projection pursuit dynamic clustering model, a best projection pursuit dynamic clustering model can be found. Compared with original algorithm, experiments show that this method can make particle swarm algorithm avoid getting into local optimal solution.
作者 王莎 高茂庭
出处 《计算机工程与应用》 CSCD 2013年第8期198-202,208,共6页 Computer Engineering and Applications
基金 上海海事大学科研基金
关键词 混合粒子群算法 投影寻踪 动态聚类 mixed particle swarm algorithm projection pursuit dynamic clustering
  • 相关文献

参考文献7

  • 1Friedman J H, Tukey J W.A projection pursuit algorithm forexploratory data analysis[J].IEEE Transactions on Computer,1974,23(9):881-890.
  • 2倪长健,崔鹏.投影寻踪动态聚类模型[J].系统工程学报,2007,22(6):634-638. 被引量:33
  • 3Kim K W,Yun Y S,Yoon J M.Hybrid genetic algorithm withadaptive abilities for resource-constrained multiple projectscheduling[J].Computers in Industry,2005,56: 143-160.
  • 4Kennedy J, Eberhart R.Particle swarm optimization[C]//ProcIEEE International Conference on Neural Networks.Piscat-away,NJ:IEEE Service Center, 1995 : 1942-1948.
  • 5KANTARDZICM 闪四清 陈茵.数据挖掘:概念、模型、方法和算法[M].北京:清华大学出版社,2003..
  • 6Shi Yuhui, Eberhart R C.A modified particle swarm opti-mizer[C]//Proceedings of the IEEE Congress on EvolutionaryComputation.[S.1.].IEEE Press, 1998:69-73.
  • 7Clerc M.A method to improve standard PSO[R].2009-03-13.

二级参考文献16

共引文献34

同被引文献50

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部