期刊文献+

基于医疗本体的语义相似度评估方法 被引量:4

Semantic similarity estimation method based on medical ontology
下载PDF
导出
摘要 为了能够正确地理解医疗概念和精确地分析临床记录,提出了一种基于概念信息量的方法来衡量概念之间的语义相似度。引进了计算概念信息量的算法,从医疗本体的分类知识中来计算概念的信息量。介绍和分析了常用的语义相似度算法,根据概念的信息量来重定义这些语义相似度算法,产生新的基于概念信息量的语义相似度算法。通过使用一个医疗术语的评估标准和一个标准的医疗本体来评估和比较这些算法。实验结果表明,相比常用的语义相似度算法,重定义后的算法有效地改善了概念相似性评估的准确性。 To properly understanding medical concept and precisely analysing clinical records, a method based on information content (IC) of concept is proposed to measure the semantic similarity between concepts. Firstly, the algorithm of computing IC of concept is introduced, which computes the IC of concept from the taxonomical knowledge modelled in medical ontologies. Then, well-known semantic similarity algorithms is introduced and analyzed. After that, new semantic similarity algorithms based on IC of concept are expressed by redefining these well-known semantic similarity measures in terms of IC of concept. Fi- nally, these algorithms are evaluated and compared by using a benchmark of medical terms and a standard medical ontology. Ex- periment shows that these redefined algorithms results in noticeable improvements in accuracy comparing with well-known se- mantic similarity algorithms.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第4期1287-1291,共5页 Computer Engineering and Design
基金 山西省回国留学人员科研基金项目(2011-028)
关键词 信息量 语义相似度 概念 医疗本体 分类知识 information content semantic similarity concept medical ontologies taxonomical knowledge
  • 相关文献

参考文献10

  • 1Aseervatham S, Bennani Y. Semi-structured document categorization with a semantic kernel [J]. Pattern Recognition, 2009, 42 (9): 2067-2076.
  • 2Batet M, Valls A, Gibert K. Improving classical clustering with ontotogies [C] //Yokohama, Japan.. Proceedings of the 4th World conference of the IASC, 2008- 137-146.
  • 3Ming Yen Chen, Hui Chuan Chu, Yuh Min Chen. Developing a semantic-enable information retrieval mechanism [J]. Expert Systems with Applications, 2010, 37 (9): 322-340.
  • 4刘宏哲,须德.基于本体的语义相似度和相关度计算研究综述[J].计算机科学,2012,39(2):8-13. 被引量:99
  • 5ZHOU Z, WANG Y, GU J. A new model of information content for semantic similarity in WordNet [C]//Second interna- tional conference on future generation communication and net- working symposia. Sanya, Hainan Island, China: IEEE Computer Society, 2008: 9-85.
  • 6Sachin Mathur, Deendayal Dinakarpandian. Finding disease similarity based on implicit semantic similarity [J]. Journal of Biomedical Informatics, 2012, 45 (9): 363-371.
  • 7Bollegala D, Matsuo Y, Ishizuka M. WebSim.. A web-based semantic similarity measure [C]//Miyazaki, Japan: The 21st annual conference of the Japanese society for artificial intelligence, 2007.. 757-766.
  • 8David Sdnchez, Montserrat Batet, David Isem, et al. Ontology-based semantic similarity: A new feature-based approach [J]. Expert Systems with Applications, 2012, 39 (11): 7718-7728.
  • 9David Sanchez, Albert Sole-Ribalta, Montserrat Batet, et al. Enabling semantic similarity estimation across multiple ontologies: An evaluation in the biomedical domain [J]. Journal of Biomedical Informatics, 2012, 45 (9): 141-155.
  • 10Pedersen T, Pakhomov S, Patwardhan S, et al. Measures of semantic similarity and relatedness in the biomedical domain [J]. Journal of Biomedical Informatics, 2007, 40 (8): 288-299.

二级参考文献43

  • 1Tversky A. Features of Similarity [J]. Psychological Review, 1977,84(4) : 327-352.
  • 2Budanitsky A, Hirst G. Evaluating wordnet-based measures of lexical semantic relatedness [ J ]. Computational Linguistics, 2006,32(1) : 13-47.
  • 3Sussna M. Word sense disambiguation for free-text indexing using a massive semantic network[C]//Proceedings of the Second International Conference on Information and Knowledge Management(CIKM-93). Arlington,Virginia, 1993:67 74.
  • 4Corley C, Mihalcea R. Measuring the semantic similarity of texts [C]//Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment. Ann Arbor, MI, US, June 2005 : 13-18.
  • 5Fellbaum C. WordNet: An Electronic Lexical Database [M]. MIT Press, 1998.
  • 6Fleischman M, Hovy E. Multi-document person name resolution [C]// Harabagiu S, Farwell D, eds. Proceedings of the Work-shop on Reference Resolution and its Applications. Barcelona, Spain,July 2004:1 8.
  • 7Gurevych I, Strube M. Semantic similarity applied to spoken dia logue summarization[C]//Proceedings of the 20th International Conference on Computational Linguistics. Geneva, Switzerland, 2004:764-770.
  • 8Hassaa H, Hassan A, Emam O. Unsupervised information extraction approach using graph mutual reinforcement[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Sydney,Australia,July 2006: 501-508.
  • 9Hirst G,Onge D S. Lexical chains as representations of context for the detection and correction of malapropisms[C]//Fellbaum C, ed. WordNet: An Electronic LexicalDatabase. MIT Press, 1998:305 332.
  • 10Inkpen D, Esilets A. Semantic similarity for detecting recognition errors in automatic speech transcripts[C]//Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Vancouver, British Columbia, Canada,October 2005 : 49-56.

共引文献98

同被引文献59

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部