期刊文献+

基于GA理论的Volterra核辨识的多音激励设计 被引量:1

Design of multitone excitation signal of Volterra kernels identification based on genetic algorithm theory
下载PDF
导出
摘要 为了克服以往在Volterra核辨识的多音激励信号设计过程中,由于不恰当的选择多音激励信号相位而导致出现信号出现的强波峰,提出了一种新的基于遗传算法(genetic algorithm,GA)的多音激励信号设计方法。分析了多音激励下Volterra核的输出性质,提出了Volterra核辨识多音激励信号设计应满足的条件;以最小化波峰因子(Crest factor,CF)作为目标函数,将多音激励信号的相位选择问题看成一个多元优化问题,便于采用遗传算法来求解该问题;根据实际问题确定变量的取值范围,编码方式及遗传算法的控制参数等。理论分析及实验结果表明,该方法在不改变功率谱的情况下,可显著降低信号的CF,避免了强波峰的产生,是一种实用的方法。 The strong peaks would be present in the design of multitone excitation signal of Volterra kernel identification for improperly choosing the phases of frequency components of the multitone signal, to overcome this problem, a novel design method of multitone excitation signal is proposed based on genetic algorithm (GA). Firstly, the output properties of Volterra kernels ex- cited by multitone excitation signal are analyzed, and the conditions required by the design of multitone excitation of Volterra ker- nels identification are proposed. Secondly, minimizing the crest factor (CF) is considered as objective function, and the problem of choosing phases of multitone excitation signal is considered as a multiple variables optimized problem which can be solved by genetic algorithm. Finally, the values range of the variables, encoded mode and control parameters of GA are estimated in terms of practical problems. Theoretical analysis and experimental results indicate that the proposed method does not change the power spectrum of multitone excitation signal and can observably reduce CF. The proposed method avoids generating strong peaks in the multitone excitation signal and is a practical method.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第4期1393-1398,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61174207 61074072)
关键词 VOLTERRA 多音激励信号 遗传算法 系统辨识 波峰因子 Volterra multitone excitation signal genetic algorithm system identification crest factor
  • 相关文献

参考文献14

二级参考文献83

  • 1刘晓东,张毅刚,孙圣和.具有最小搜索空间的优化测试生成算法[J].仪器仪表学报,2002,23(z1):32-34. 被引量:2
  • 2马红光,韩崇昭,王国华,许建锋,许萍,李站良.雷达引信视频放大器的GFRF辨识模型及其误差分析[J].探测与控制学报,2004,26(3):50-54. 被引量:6
  • 3许川佩,李智,莫玮.基于粒子群算法的时序电路测试生成[J].电子测量与仪器学报,2006,20(1):6-9. 被引量:6
  • 4马红光,韩崇昭.电路中的混沌与故障诊断[M].北京:国防工业出版社,2007.
  • 5[1]H.S.Shapiro. Extremal problems for polynomials. M.S.Thesis, M.I.T.,1951.
  • 6[2]W.Rudin. Some theorems on Fourier coefficients. Proc. Amer. Math. Soc., 1959,(10): 855~859.
  • 7[3]D.J.Newman. An L1 extremal problem for polynomials. Proc. Amer. Math. Soc., Dec. 1965, 16: 1287~1290.
  • 8[4]J.E.Littlewood. On polynomials Σn±Zm,ΣneamiZm,Z=eβj, J.Lodon Math. Soc., 1966, 41: 367~376.
  • 9[5]M.R.Schroeder. Systhesis of loew-peak-factor signals and binary sequences with low autocorre-lation. IEEE Trans. Information Theory, 1970, IT-16: 85~89.
  • 10[6]R.W.Gerchberg,W.O.Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 1972,35(2): 237~246.

共引文献67

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部