期刊文献+

基于概念关联度的智能检索研究 被引量:5

Research of intelligent retrieval based on concept correlation degrees
下载PDF
导出
摘要 为提高智能检索系统的查准率和查全率,分析了目前查询扩展方法存在的不足,考虑计算有向边权重的因子对语义距离的影响,对基于语义相似度的计算方法进行优化,提出了一个计算用户查询与文档相关性之间关联度的表达式。利用构建的领域本体量化概念间的关联程度,通过计算合理的相似度与相关度的权重来进行查询扩展,并设计了一个基于概念关联度的语义检索模型,将检索结果按关联度排序显示。实验表明,该方法在确保查准率的前提下能有效提高查全率。 To improve the precision ratio and recall ratio of the intelligent retrieval system, the present problems of query expansion method are analyzed. Thinking the influence of directed edge weight factor to semantic distance, optimizing the semantic similarity calculation method, a correlation degree expression between user query and document relevance is proposed. This method quantifiy correlation degree between concepts on the conducted ontology. User query is to expand through the calculation of reasonable similarity and relevance weights. A semantic retrieval model based on concepts correlation degree is designed. And the result of every search is displayed in order by correlation degrees. Finally, the experimental results show that the method can raise the recall rate effectively under ensuring the precision rate.
作者 王旭阳 萧波
出处 《计算机工程与设计》 CSCD 北大核心 2013年第4期1415-1419,共5页 Computer Engineering and Design
基金 甘肃省教育厅硕导基金项目(1114ZTC110)
关键词 本体 查询扩展 概念关联度 智能检索 共现频率 ontology query expansion~ concept correlation degrees intelligent retrieval co_ occurrence frequency
  • 相关文献

参考文献8

二级参考文献44

共引文献73

同被引文献43

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部