摘要
基于C0型锯齿理论,构造了三节点梁单元并推导了层合/夹层梁静力和稳定问题有限元列式。C0型锯齿理论特点是面内位移不含有横向位移一阶导数,构造有限元时仅需使用C0插值函数。通过数值算例研究了影响软核夹层梁临界载荷精度的因素。数值结果表明,层间应力连续条件对软核夹层梁临界载荷精度有重要影响,应使用预先满足层间应力连续条件的精化高阶理论分析软核夹层结构稳定问题。
Based on the C0-type zig-zag theory,this paper presents a three-node beam element in combination with the finite element formulation for the static and stability analysis of laminated composite and sandwich beams.Differing from other zig-zag theories,the first derivative of transverse displacements has been taken out from the in-plane displacement fields in the C0-type zig-zag theory,so that the C0 shape functions are only required during its finite element implementation.To study the factors influencing the accuracy of critical loads,static and stability problems of soft-core beams are analyzed.Numerical results show that the continuity of interlaminar stresses has important effects on the accuracy of critical loads.Refined higher-order theory satisfying interlaminar stress continuity ought to be used to analyze the stability problems of soft-core sandwich structures.
出处
《工程力学》
EI
CSCD
北大核心
2013年第4期47-51,共5页
Engineering Mechanics
基金
辽宁高校优秀人才支持项目(LR201033)
沈阳市科技项目(F10-205-1-16)
关键词
C0型锯齿理论
三节点梁单元
夹层梁
临界载荷
层间连续
C0-type zig-zag theory
three-node beam element
soft-core sandwich beam
critical load
interlaminar continuity